

Image Steganography based on Iterative Adversarial perturbations onto A Synchronized-directions Sub-image

> Xinghong Qin, Shunquan Tan, Weixuan Tang, Bin Li and Jiwu Huang

> > **Shenzhen University**

#### Introduction

- Steganography and steganalysis are a pair of antagonistic players.
  - Steganography:
    - Steganography is trying to escape being detected by steganalysis.
  - Steganalysis:
    - The warden discriminates whether a cover or a stego object is sent.
  - Scenario
    - The sender slightly modifies the cover **C** to conceal the secret message **M** to produce the stego **S**.
    - Send **S** to the receiver through the channel with passive the warden.
    - The receiver extracts **M** from the received **S**.
    - If the warden classifies the sent object is a stego, he maybe block-up the transmission or damage the sent object.







#### Introduction

HINEN UNITED STATES

• Steganography has to face challenges of both feature-based steganalysis and CNN steganalysis.



#### Introduction

#### • Motivation.

- Incorporate SMD strategy and adversarial examples to further enhance steganographic security to counter both feature-based steganalysis and CNN steganalysis.
  - Synchronizing modification directions (SMD) strategy can improve steganographic security.

$$D(\mathbf{X}, \mathbf{Y}) = \sum_{(i,j), (k,l) \in \mathcal{C}} S_C(X_{ij} - Y_{i,j}, X_{kl} - Y_{kj})$$
(1)

• Many machine learning classifiers are vulnerable to adversarial examples.

$$\mathbf{X}_{adv} = \mathbf{X} + \epsilon \cdot sign(\nabla_{\mathbf{X}} \mathscr{L}(\Phi(\mathbf{X}), \mathbf{y}_t))$$
(2)



$$S_{C} = \begin{array}{c|cccc} & -1 & 0 & 1 \\ \hline -1 & 0 & A_{C} & \nu A_{C} \\ 0 & A_{C} & 0 & A_{C} \\ 1 & \nu A_{C} & A_{C} & 0 \end{array}$$





#### **Our Method**



- Base framework
  - ITE-SYN: *ITE* ratively apply adversarial perturbations onto one *SYN* chronized modification directions sub-image.

| ITE-SYN                 |                           |
|-------------------------|---------------------------|
| Embed secret message    | Iteratively apply         |
| with synchronizing      | adversarial perturbations |
| modification directions | onto one sub-image        |

#### **Our Method**

- Embed secret message with synchronizing modification directions
  - Implement clustering modification directions (CMD) strategy.
    - The initial costs  $\xi$  are only computed once.
    - Adjust costs as

$$\begin{cases} \rho_{\pm}^{(i,j)} = \xi_{\pm}^{(i,j)} / \beta & \text{if } \sum_{\Delta c^{(r,s)} \in \mathcal{N}^{(i,j)}} \Delta c^{(r,s)} > 0, \\ \rho_{\pm}^{(i,j)} = \xi_{\pm}^{(i,j)} / \beta & \text{if } \sum_{\Delta c^{(r,s)} \in \mathcal{N}^{(i,j)}} \Delta c^{(r,s)} < 0, \\ \rho_{\pm}^{(i,j)} = \xi_{\pm}^{(i,j)} & \text{otherwise,} \end{cases}$$
(3)

where 
$$\mathcal{N}^{(i,j)} = \{ \Delta c^{(r,s)} | r \in \{i-1, i+1\}, s \in \{j-1, j+1\} \}$$
  
 $\Delta \mathbf{C} = \mathbf{S} - \mathbf{C}$ 

• Select  $\beta = 10$  for images with size-scale  $256 \times 256$ 





## **Our Method**





#### **Our Method**





- Adversarial perturbations are only applied onto one sub-image
  - If re-embedding one sub-image is failed to deceive the target CNN classifier, the next sub-image will be selected to be re-embedded until all sub-images are tried re-embedding.





- Setup
  - Image database: BOSS256
    - Union of BOSSBase v1.01 and BOWS2. Totally 20000 images.
    - Resize each image from size-scale 512X512 to 256X256 by Matlab.
    - For CNN, 1000 images and 5000 images randomly selected from BOSSBase for validation and testing, other 14000 images are for training.
  - Cost functions
    - Heuristic method: HILL.
    - Model-based method: MiPOD.
  - Steganalysis
    - CNN classifiers
      - The target: XuNet, YeNet.
      - The non-target: SRNet.
    - Ensemble classifiers: SRM, maxSRMd2, PDASS.

- Comparison schemes
  - ADV-EMB
  - MinMax + ADV-EMB.
- Payload rates
  - 0.2 bpp and 0.4 bpp
- Performance  $P_E = \frac{P_{FA} + P_{MD}}{2}$ (7)
- Stegos are created by the simulator unless specified.

- Deceiving original classifiers ٠
  - Notations \_\_\_\_
    - BAS: baseline.
    - ADV: ADV-EMB. •
    - ITE: ITE-SYN. ٠
    - M1-M9: versions of MinMax+ADV-EMB.
  - Target CNN classifier \_\_\_\_
    - XuNet: (a)-(b)
    - YeNet: (c)-(d) •
  - Conclusion
    - ITE-SYN can effectively deceive the target CNN classifiers.
    - ITE-SYN improve steganographic performances to ٠ counter other original classifiers.



0

0.6

0.5

0.3

0

D D



(b) MiPOD for XuNet







- Countering adversarial training classifiers ٠
  - ITE-SYN outperforms ADV-EMB.
  - For comparison with MinMax+ADV-EMB,
    - ITE-SYN performs superior for non-target CNN classifiers and feature-based classifiers.
    - ITE-SYN performs superior when countering YeNet classifiers.
    - MinMax+ADV-EMB outperforms ITE-SYN after the fourth round when countering XuNet classifier.
- Discussion
  - Computational complexity of ITE-SYN is lower than of MinMax+ADV-EMB.
    - ITE-SYN creates only one stego image for each cover image.
  - It is predicted that steganographic performances of MinMax+ITE-SYN should be further improved.





(b) MiPOD for XuNet







0.2

#### **Appendix: Issues**

- Performances of MinMax+ITE-SYN
  - Notations
    - BAS: baseline.
    - M0-M9: rounds of MinMax.
  - Conclusion
    - MinMax+ITE-SYN outperforms MinMax+ADV-EMB.



Performances of countering adversarial training classifiers.



- Computational time (STCs)
  - Success rates are over 90%.
    - ITE-SYN can effectively deceive the target CNN classifiers.
  - Maximal iteration
    - ADV-EMB: 10.
    - ITE-SYN: 400.
  - Average computational times of ITE-SYN are less than of ADV-EMB, except for ITE-SYN for XuNet with payload rate 0.2 bpp.
    - Success rate of ITE-SYN is less about 5%.
- Cumulative success rate

$$\mathscr{P}(x_0) = P_r\{x \le x_0\} = \int_{-\infty}^{x_0} f(t)dt$$
(8)

- When  $\gamma_{max} = 1$ ,
  - cumulative success rates are over 80%,
  - the maximal iteration of ITE-SYN: 40,
  - average time of creating adversarial stego image by ITE-SYN for XuNet as the target CNN classifiers with payload rate 0.2 bpp is 7.38 seconds.

Average success rate (in %) and computational time (in seconds) of creating an adversarial stego image.

| Target | Scheme  | 0.2 bpp      |       | 0.4 bpp      |      |
|--------|---------|--------------|-------|--------------|------|
|        |         | Success rate | Time  | Success rate | Time |
| XuNet  | ADV-EMB | 95.76        | 10.40 | 99.49        | 7.79 |
|        | ITE-SYN | 90.79        | 24.19 | 97.99        | 7.48 |
| YeNet  | ADV-EMB | 99.82        | 6.68  | 99.61        | 6.79 |
|        | ITE-SYN | 98.95        | 6.66  | 99.60        | 3.94 |



Cumulative success rate of creating an adversarial stego images.

- Conclusion
  - Computational complexity of ITE-SYN is lower.

# Conclusion



- ITE-SYN further enhances steganographic security countering both feature-based steganalysis and CNN steganalysis.
  - ITE-SYN can effectively deceive the target CNN classifiers, and can effectively resist on detection of other original classifiers, including both featurebase classifiers and CNN classifiers.
  - ITE-SYN has significant undetectability to counter adversarial training classifiers, including both feature-based classifiers and CNN classifiers.
  - Gradually increased adversarial perturbations are only applied onto one clustering modification directions sub-image.
    - It spends low computational expense.
    - It guarantees that adversarial perturbations applied are minimal.
    - It is unnecessary to search the optimal adversarial intensity.

- Future works
  - Extend the method to JPEG images.
    - Investigate incorporation of adversarial perturbations and effective cost strategy.
  - Investigate inner mechanisms of both SMD strategy and adversarial perturbations to design more powerful steganographic algorithm.

# Thanks!

