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Introduction and overview Introduction

Introduction (1): Edge Caching

Nowadays, digital devices (smartphones, tablets, and other IP connected devices) support
high video data rates.
Bottleneck remains from the network side for its inability to deliver the content in a
timely manner [1].

Major cause is the increasingly data traffic due to an increased number of application
services and devices.
Assessing traffic patterns reveals that the repeated content requests cause backhaul
congestion and slower content delivery [2].

To avoid these issues, edge caches at the base stations (BSs) are used in the future
wireless networks, where BSs intelligently cache the contents based on the latest content
popularity profiles [3].

[1]N. Wang et al. “Satellite Support for Enhanced Mobile Broadband Content Delivery in 5G”. In: IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting. 2018, pp. 1–6. doi: 10.1109/BMSB.2018.8436902.
[2]L. Li, G. Zhao, and R. S. Blum. “A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery

strategies”. In: IEEE Communications Surveys & Tutorials 20.3 (2018), pp. 1710–1732.
[3]N. Garg et al. “Online Content Popularity Prediction and Learning in Wireless Edge Caching”. In: IEEE Transactions on Communications 68.2 (2020),

pp. 1087–1100. doi: 10.1109/TCOMM.2019.2956041.
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Introduction and overview Introduction

Introduction (2): RL
Modeling popularity profiles as a finite state Markov chain, reinforcement learning (RL)
strategies have been investigated:

Function approximation based RL methods are employed to reduce the storage and
computational overhead [4].
A deep RL method is proposed for dynamic content updation in [5].
Towards secure edge caching, a zero sum game framework is formulated between an
attacker and the content provider in [6], while mobile users acting as game-followers.
In [7], hierarchical DQL is used to predict demands and learn popularitities, i.e., decoupling
the placement problem for BS and users.
In [8], under network virtualization, a BS is decoupled into a service provider and a virtual
network operator, which leases resources to users.

[4]A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis. “Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities”. In:
IEEE Journal of Selected Topics in Signal Processing 12.1 (2018), pp. 180–190, N. Garg et al. “Function Approximation Based Reinforcement Learning for Edge
Caching in Massive MIMO Networks”. In: IEEE Transactions on Communications (2020), pp. 1–1. doi: 10.1109/TCOMM.2020.3047658.
[5]P. Wu et al. “Dynamic Content Update for Wireless Edge Caching via Deep Reinforcement Learning”. In: IEEE Communications Letters 23.10 (2019),

pp. 1773–1777.
[6]Q. Xu, Z. Su, and R. Lu. “Game Theory and Reinforcement Learning Based Secure Edge Caching in Mobile Social Networks”. In: IEEE Transactions on

Information Forensics and Security 15 (2020), pp. 3415–3429.
[7]Y. Qian et al. “Reinforcement Learning-Based Optimal Computing and Caching in Mobile Edge Network”. In: IEEE Journal on Selected Areas in

Communications 38.10 (2020), pp. 2343–2355.
[8]K. Thar et al. “A Deep Learning Model Generation Framework for Virtualized Multi-Access Edge Cache Management”. In: IEEE Access 7 (2019),

pp. 62734–62749.
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Introduction and overview Introduction

Introduction (3): MARL
MARL can effectively improve the cache placement performance with some cooperation.

[9] proposes a cognitive cache, which collaborates with neighbors to learn caching strategy.
In [10], a deep RL method is presented to promote cooperation among edge servers via a
centralized remote server to improve the storage utilization.
In [11], considering collaboration among computing and caching resources, a double
DQL approach is used for resource allocation, while [12] considers non-orthogonal multiple
access (NOMA).
In [13], considering trilateral-cooperation (macro-cell, roadside units and vehicles) in
vehicular edge computing, a joint content delivery and placement problem is formulated as a
mixed-integer linear program (MILP), and nature-inspired deep deterministic policy gradient
(DDPG) is used to obtain the suboptimal solution.

[9]M. Radenkovic and V. S. H. Huynh. “Cognitive Caching at the Edges for Mobile Social Community Networks: A Multi-Agent Deep Reinforcement Learning
Approach”. In: IEEE Access 8 (2020), pp. 179561–179574.
[10]Y. Zhang et al. “Cooperative Edge Caching: A Multi-Agent Deep Learning Based Approach”. In: IEEE Access 8 (2020), pp. 133212–133224.
[11]J. Ren et al. “Collaborative Edge Computing and Caching With Deep Reinforcement Learning Decision Agents”. In: IEEE Access 8 (2020),
pp. 120604–120612.
[12]S. Li, B. Li, and W. Zhao. “Joint Optimization of Caching and Computation in Multi-Server NOMA-MEC System via Reinforcement Learning”. In: IEEE
Access 8 (2020), pp. 112762–112771.
[13]G. Qiao et al. “Deep Reinforcement Learning for Cooperative Content Caching in Vehicular Edge Computing and Networks”. In: IEEE Internet of Things
Journal 7.1 (2020), pp. 247–257.NG, TR (UoE) CoMARL-WEC ICASSP 2021 6 / 35



Introduction and overview Overview

Overview of MARL approaches

In this work, for a multi-cell system, MARL algorithms are investigated under four
scenarios for cooperation.

Full cooperation (S1),
Episodic cooperation (S2),
Distributed cooperation (S3), and
Independent operation (no-cooperation, S4).
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System Model Caching model

System model

We consider a network of J SBSs in a
given region, who fetch the contents
cooperatively. Each SBS is equipped with
a cache of size L units.
Contents in the cache are chosen from a
content library F = {W1, . . . ,WF}, where
each content is assumed to be of same
size.
In figure, each BS has a cache of L = 3
units, where different colors indicates
different contents.
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System Model Caching model

Normalized cache hit rate (1)

Let pjft ∈ [0, 1] denote the normalized demand (or popularity) of the f th content at time
t at the jth SBS such that

∑
f ∈F pjft = 1.

For the uncoded cache placement, where the content in not splittable, let cjft ∈ {0, 1}
denote the status of the f th content whether it is cached at j th SBS in time slot t or not.
Let cT

jt = [cj1t , . . . , cjFt ] ∈ {0, 1}1×F such that cT
jt 1F = L, where 1F defines an F × 1

vectors of all ones.
Then, for the popularity vector pT

jt = [pj1t , . . . , pjFt ] ∈ [0, 1]1×F , the normalized cache hit
is defined as the sum of normalized demands served from the cached content and can be
expressed for the j th SBS as

Hlocal (pjt , cjt) =
∑
f ∈F

pjftcjft , (1)

which represent the local cache hit for the j th SBS[14].
[14]pjt is not known in advance.

NG, TR (UoE) CoMARL-WEC ICASSP 2021 10 / 35



System Model Caching model

Normalized cache hit rate (2)

If the content is assumed coded, then cjft ∈ [0, 1].
The average cache hit rate across network-wide can be written as
H(Pt ,Ct) = 1

J
∑

j Hlocal (pjt , cjt) , where Ct = [c1t , . . . , cJt ] and Pt = [p1t , . . . ,pJt ].

To observe the approximate value of H, let pjt = 1
F 1F (for uniformly popular contents).

Then, we have
Hlocal (pjt , cjt) = L

F . (2)
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System Model Caching model

Caching phases

CD IECPL CD IECPL

︸ ︷︷ ︸︸ ︷︷ ︸
tth time slot (t + 1)th time slot

pjtpjt
(unknown)

cjt pj,t+1
(unknown)

pj,t+1cj,t+1

We consider a time slotted model [15].
In the content placement (CPL) phase, each jth BS updates their caches to the latest
content popularity using their synced local RL strategy.
In the content delivery (CD) phase, contents are delivered from edge caches to users as
the requests arrive.
In the information exchange (IE) phase, local demands are aggregated and communicated
to the central BS based on the cooperation scheme selected.

[15]A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis. “Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities”. In:
IEEE Journal of Selected Topics in Signal Processing 12.1 (2018), pp. 180–190.
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System Model Caching model

Objective (1)

Our objective is to optimize the content placement at SBSs in order to maximize the
long-term network-wide normalized cache hit rate as

max
Cj∀j

∞∑
i=t

γ i−tH(Pt ,Ct) (3a)

subject to CT
t 1F = L1J ,∀t. (3b)

The above problem cannot be decoupled since the user content requests are correlated
across SBSs and across content library [16].
Also, Ct is decided based on previous popularity Pt−1.

[16]S. Liu et al. “Distributed Caching Based on Matching Game in LEO Satellite Constellation Networks”. In: IEEE Communications Letters 22.2 (2018),
pp. 300–303. issn: 1089-7798. doi: 10.1109/LCOMM.2017.2771434, C. Chau, M. Khonji, and M. Aftab. “Online Algorithms for Information Aggregation From
Distributed and Correlated Sources”. In: IEEE/ACM Transactions on Networking 24.6 (2016), pp. 3714–3725. issn: 1063-6692. doi:
10.1109/TNET.2016.2552083.
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System Model Caching model

Objective (2)

Further, the problem is difficult to solve as the search space increases exponentially with
the content size and the number of SBSs

(F
L
)J .

Therefore, to analyze the overhead complexity due to multiple SBSs, the proposed
cooperative multi-agent reinforcement learning algorithms are considered under four
cooperative scenarios.
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Multi-agent Q-learning States, actions, and rewards

States and actions

The content popularity at different time slots is assumed to follow Markov process [17]
with unknown transition probabilities.
A state at time t can be defined as the network content popularity at time t,

sjt = pj,t−1 ∈ S = [0, 1]F .

Similarly, a caching action in the time slot t is defined as the cache placement
ajt = cjt ∈ A = {0, 1}F×1.

[17]A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis. “Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities”. In:
IEEE Journal of Selected Topics in Signal Processing 12.1 (2018), pp. 180–190.
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Multi-agent Q-learning States, actions, and rewards

Rewards

At the end of time slot t, when popularity is revealed, the reward is computed, which is
given for the j th SBS as

r (sjt , ajt) = Hlocal (pj,t , cjt) . (4)

Since the action space cardinality is huge and is difficult to implement in practice, the
objective of RL agent is take suboptimal decision steps and reach to the better solution
sequentially.
The cooperation among SBSs is coordinated by a central controller (CC).
Four cooperation scenarios are as follows.

NG, TR (UoE) CoMARL-WEC ICASSP 2021 17 / 35



Multi-agent Q-learning Scenario 1 (S1): full cooperation at each step

Scenario 1 (S1): full cooperation at each step

Each SBS forward the tuple of states, actions, rewards and next-states (SARS).
The CC gather these tuples (SARS) to update one global Q-matrix.
Then, CC broadcasts the Q-matrix updates to each SBS.
Since Q-values are updated at every step, this scenario is the most resource-inefficient,
though providing the best performance.
In this algorithm, each SBS benefits from the observations of the others, that is, J scouts
are searching the optimum point with full inter-communications.
The updation step of the critic Q-function can be written as for all
(s∗, a∗) ∈ {(sjt , ajt) , ∀j}

Q(s∗, a∗)← (1− βt)Q(s∗, a∗) + βt

[
r∗(s∗, a∗) + γmax

b
Q(s ′

∗, b)− Q(s∗, a∗)
]
,

where s ′
∗ denote the next state.

NG, TR (UoE) CoMARL-WEC ICASSP 2021 18 / 35



Multi-agent Q-learning Scenario 1 (S1): full cooperation at each step

MARL algorithm for S1

Initialize Q (s, a) = 0,∀(s, a).
For episode = 1, . . . ,M

receive an initial observation state st
For step = 1, . . . ,T

select ε-greedy J actions at BSs, at
observe the rewards rjt ,∀j and the next state st+1
send SARS (sjt , ajt , rjt , sj,t+1),∀j to the CC
update Q(s, a), ∀(s, a) ∈ {(sjt , ajt) ,∀j}

EndFor
EndFor

NG, TR (UoE) CoMARL-WEC ICASSP 2021 19 / 35



Multi-agent Q-learning Scenario 2 (S2): episodic cooperation

Scenario 2 (S2): episodic cooperation

At each step of an episode, SBSs send SARS information to the CC.
CC updates the global Q-matrix (Qglobal) at each step.
The local Q-matrices at SBSs (Qlocal) are updated at the end of an episode via the global
Q-matrix at the CC Qglobal .
As compared to Scenario 1, the advantage is the reduced cooperation messages.
Since in S1, Q-function was updated at every step, thus, for T steps per episode, the
cooperation complexity is reduced by a factor of 1/T .
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Multi-agent Q-learning Scenario 2 (S2): episodic cooperation

MARL algorithm for episodic cooperation (S2)

Initialize Qlocal (s, a) = Qglobal(s, a) = 0,∀(s, a).
For episode = 1, . . . ,M

receive an initial observation state st
For step = 1, . . . ,T

select ε-greedy J actions (at) at SBSs via Qlocal
observe the rewards rjt ,∀j and the next state st+1
send SARS (sjt , ajt , rjt , sj,t+1),∀j to the CC
update Qglobal(s, a), ∀(s, a) ∈ {(sjt , ajt) ,∀j}

EndFor
update Qlocal ← Qglobal .

EndFor

NG, TR (UoE) CoMARL-WEC ICASSP 2021 21 / 35



Multi-agent Q-learning Scenario 3 (S3): distributed cooperation

Scenario 3: distributed cooperation

This scenario further reduces the cooperation, and it does not require a central controller.
In a distributed operation, a SBS can cooperate with its nearest SBS only.
Each SBS has their local Q-matrices.
At each step, each SBS shares the SARS information to one of the nearest SBSs only.
Therefore, at each step, two SARS observations are used to update Q-values, (instead of
J values from all SBSs in S1).
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Multi-agent Q-learning Scenario 3 (S3): distributed cooperation

MARL algorithm for distributed cooperation (S3)

Initialize Qj (s, a) = 0,∀(s, a),∀j .
For episode = 1, . . . ,M

receive an initial observation state st
For step = 1, . . . ,T

For j = 1, . . . J
– select ε-greedy actions ajt via Qj
– observe rjt and st+1
– sync SARS (sjt , ajt , rjt , sj,t+1) to a neighbor
– update local Qj(s, a) with two observations
EndFor

EndFor
EndFor
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Multi-agent Q-learning Scenario 4 (S4): independent (no-cooperation)

Scenario 4: independent (no-cooperation)

Here, each SBS operate independently, although the sets of states and actions are same.
In other words, they do not utilize other experience and search on their own.
There is no-cooperation or any exchange of SARS information or Q-values.
Local Q-values at each SBSs are updated independently with their local SARS
information.
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Multi-agent Q-learning Scenario 4 (S4): independent (no-cooperation)

MARL for independent operation (S4)

Initialize Qj (s, a) = 0,∀(s, a),∀j .
For episode= 1, . . . ,M

receive an initial observation state st
For step = 1, . . . ,T

For j = 1, . . . J
– select ε-greedy actions ajt via Qj
– observe rjt and st+1
– update local Qj(s, a)
EndFor

EndFor
EndFor
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Multi-agent Q-learning Cooperation overhead analysis

Cooperation comparison

S∗ Per SBS per episode- cooperation
S1 4JT UL |S| |A|J T DL
S2 4JT UL |S| |A|J DL
S3 4T UL 4T DL
S4 0 UL 0 DL

Table 1: Cooperation comparison (UL: uplink, DL: downlink, T : #steps per episode, J : #SBSs).
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Simulation Results Simulation Settings

Simulation Settings

Let F = 100 files in the content library,
L = 20 cache size at each SBS.
MARL algorithms are run for two setups:

J = 3 SBSs with |S| = 8 and |A| = 128 actions
J = 7 SBSs with |S| = 16 and |A| = 256 actions.

Learning parameters (e.g., learning rate, discount factor, etc.) are assumed to be same.
We have averaged the cache hits across SBSs and steps.
For uniformly distributed random popularity profiles, the average cache hit rate is
approximately L

F = 0.2 from eqn. (2).
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Simulation Results Plots

Averaged rewards progress versus episodes (1): Uniform popularities

The normalized cache hit rate of
S1 is the best.
S3 ≈ S1, since J = 3 is small.
S4 is the worst.
S2 is better than S1 due to small
T = 400.
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Figure 1: Averaged rewards progress versus episodes
for |S| = 8 and |A| = 128 with J = 3 SBSs.
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Simulation Results Plots

Averaged rewards progress versus episodes (2): Uniform popularities

The normalized cache hit rate of
S1 is the best.
the gap between S3 & S1 is larger
since J = 7.
S2 is worse than S4,
since T = 1500 is large, and
S4 has more frequent updates than S2.
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Figure 2: Averaged rewards progress versus episodes
for |S| = 16 and |A| = 256 with J = 7 SBSs.
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Simulation Results Plots

Averaged rewards progress versus episodes (3): Zipf popularities

The normalized cache hit rate of
S1 is the best.
S2 is worse than S4,
since T = 1500 is large.
The gap between S3 and S1 is small, due
to Zipf popularities.
S4 approximates S3, due to small J = 3
and Zipf popularities.
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Figure 3: Averaged rewards progress versus episodes
for |S| = 8 and |A| = 128 with J = 3 SBSs.
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Simulation Results Plots

Averaged rewards progress versus episodes (4): Zipf popularities

The normalized cache hit rate of
S1 is the best.
S2 is worse than S4,
since T = 1500 is large.
The gap between S3 and S1 is small, due
to Zipf popularities.
S4 is closer to S3, due to Zipf popularities.
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Figure 4: Averaged rewards progress versus episodes
for |S| = 16 and |A| = 256 with J = 7 SBSs.
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Conclusion Conclusion

Conclusion

In this work, we have studied four levels of cooperation for multi-agent Q-learning in
wireless edge caching.
Simulations results show that

When #SBSs are low, distributed cooperation with one neighbor (S3) can provide excellent
improvements close to the full cooperation (S1).
When #SBSs are more, the performance gap between S1 & S3 increases.
S4 (no-cooperation) has better hit rates than that of S2 (episodic cooperation), due to only
less frequent episodic updates (no-local updates).
Performance of S2 depends on the number of steps per episode (T ).
If T is less, more frequent updates lead to better performance of S2 than S4’s.
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Conclusion Conclusion

Thank you

Thank you.[18]

[18]The work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/P009549/1, in part by the U.K.-India
Education and Research Initiative Thematic Partnerships under Grant DST UKIERI-2016- 17-0060, and in part by the SPARC Project 148.
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