Minimum Divergence Estimation of Speaker Prior in Multi-session PLDA Scoring

Liping Chen^{1,2}, Kong Aik Lee², Bin Ma², Wu Guo¹, Haizhou Li², and Li Rong Dai¹ ¹National Engineering Lab for Speech and Language Information Processing, USTC, China ²Institute for Infocomm Research (I2R), A*STAR, Singapore

E-mail: clp2011@mail.ustc.edu.cn, kalee@i2r.a-star.edu.sg

- shorter duration cuts or exact replicas of other utterances.
- - The idea of speaker adaptation in PLDA scoring.
 - factor in multi-session scoring.

3. Speaker adaptation in PLDA scoring

between two hypotheses (By-the-book scoring method):

n +
$$\mathbf{T}\mathbf{W}_{r}$$
 Total variability space

 $\mathcal{P} \phi_r = E[\mathbf{w}_r | \mathcal{O}_r] = \underset{\mathbf{w}_r}{\operatorname{arg\,max}} p(\mathcal{O}_r | \mathbf{m} + \mathbf{T}\mathbf{w}_r) \mathcal{N}(\mathbf{w}_r | \mathbf{0}, \mathbf{I})$

$$\frac{|\mathcal{H}_{0})}{|\mathcal{H}_{1}|} = \log \frac{p(\phi_{t}, \phi_{s,r=1,...,R})}{p(\phi_{t}) p(\phi_{s,r=1,...,R})}$$
$$\frac{p(\phi_{s,r=1,...,R})}{p(\phi_{s,r=1,...,R})} = \log \frac{p(\phi_{t} | \phi_{s,r=1,...,R})}{p(\phi_{t})}$$

$$\mathbf{F}\mathbf{m}_{s}, \mathbf{F}\mathbf{L}_{s}^{-1}\mathbf{F}^{\mathrm{T}} + \mathbf{G}\mathbf{G}^{\mathrm{T}} + \mathbf{\Sigma}\right)$$
$$\left(\mathbf{G}\mathbf{G}^{\mathrm{T}} + \mathbf{\Sigma}\right)^{-1}\left(\phi_{s,r} - \mathbf{\mu}\right)$$
$$\mathbf{G}\mathbf{G}^{\mathrm{T}} + \mathbf{\Sigma}\right)^{-1}\mathbf{F}^{-1}$$

4. Minimum Divergence Estimation of Speaker Prior

For each enrollment session from the speaker s, we compute the mean and covariance of the posterior distribution:

$$\mathbf{m}_{s,r} = \mathbf{L}^{-1} \mathbf{F}^{\mathrm{T}} \left(\mathbf{G} \mathbf{G}^{\mathrm{T}} + \mathbf{\Sigma} \right)^{-1} \left(\boldsymbol{\phi}_{s,r} - \mathbf{\mu} \right)$$
$$\mathbf{L}^{-1} = \left[\mathbf{I} + \mathbf{F}^{\mathrm{T}} \left(\mathbf{G} \mathbf{G}^{\mathrm{T}} + \mathbf{\Sigma} \right)^{-1} \mathbf{F} \right]^{-1}$$

- We seek for another Gaussian distribution (the prior) that best represents the R posterior distributions.
- The Kullback-Leibler (KL) divergence [3] between the prior from the R posteriors, defined as follows:

$$D(\theta_{\rm MD}) = \sum_{r=1}^{R} E\left\{\log \frac{\mathcal{N}(\mathbf{h} | \mathbf{m}_{s,r}, \mathbf{L}^{-1})}{\mathcal{N}(\mathbf{h} | \mathbf{y}_{s}, \mathbf{P}_{s}^{-1})}\right\}$$

The minimum divergence estimates could be expressed in closed form, as follows

$$\mathcal{N}\left(\mathbf{h} \middle| \mathbf{y}_{s}, \mathbf{P}_{s}^{-1}\right) \Longrightarrow \mathbf{y}_{s} = \frac{1}{R} \sum_{r=1}^{R} \mathbf{m}_{s,r}, \mathbf{P}_{s}^{-1} = \mathbf{L}^{-1} + \mathbf{S}$$
$$\mathbf{S} = \frac{1}{R} \cdot \sum_{r=1}^{R} \left(\mathbf{m}_{s,r} - \mathbf{y}_{s}\right) \left(\mathbf{m}_{s,r} - \mathbf{y}_{s}\right)^{\mathrm{T}}$$

- NIST SRE'12 (Core task, CC2): one to over a hundred training segments per speaker, probably with content overlap among different segments for the same speaker.
- NIST SRE'10 (8conv-core task, CC5): 8 training segments per speaker
- **For both tasks**:
 - Test segments are telephone speech collected under clean environment
 - MFCC 57, UBM 512, i-vector 400
- Observations:
 - \succ By-the-book approach does not perform better than the other two approaches.
 - Comparing to Mean only, the benefit of MinDiv is not significant on SRE'10 while the results on SRE'12 show a clear benefit where the number of enrolling segments for different speakers varies and the contents of the enrolling segments for a speaker are highly correlated.

Table 1 Comparison of three speaker adaptation approaches on CC5 of NIST SRE'10 8conv-core task

	EER (%)	minDCF10	minDCF12	
By-the-book	0.8493	0.2476	0.1915	7
Mean	0.5194	0.1667	0.1446	Male
MinDiv	0.7607	0.7607	0.1623	(D
By-the-book	2.9370	0.3289	0.2625	F
Mean	2.1379	0.3116	0.2546	ema
MinDiv	2.4747	0.3720	0.3142	le

Table2 Comparison of three speaker adaptation approaches on CC2 of NIST SRE'12 core task.

	EER (%)	minDCF10	minDCF12	
By-the-book	6.8953	0.6015	0.5394	7
Mean	3.9395	0.4765	0.4065	√ale
MinDiv	3.5746	0.4238	0.3624	Û
By-the-book	6.4646	0.6338	0.5621	Fe
Mean	3.2145	0.5382	0.4440	ema
MinDiv	3.0597	0.5235	0.4292	le

6. Conclusion

- **This paper presented an initial work on solving the multi-session PLDA scoring** from the perspective of model adaptation.
- **B** Based on the idea of model adaptation, we propose an adaptation method through a minimum divergence estimate of speaker prior.

References

- [1] N.Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, "Front-end factor analysis for speaker verification," IEEE Trans. Audio Speech and Language *Processing*, vol. 19, no. 4, pp. 788-798, May 2011.
- [2] S. J. D. Prince and J. H. Elder, "Probabilistic linear discriminant analysis for inferences about identity," in Proc. International Conference on Computer Vision, 2007.
- [3] N. Brummer, "EM for Probabilistic LDA," Technical Report, Feb. 2010, Available at https://sites.google.com/site/nikobrummer/.