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Introduction

Current scoring method in PLDA is based on the hypothesis test whether the
enrollment and test utterances are from the same or different speakers.

In multi-session tasks, e.g. NIST SRE’12, the enrollment i-vectors are highly
correlated as they might be extracted from simultaneous multi-channel recordings,
shorter duration cuts or exact replicas of other utterances.

We propose:
» The idea of speaker adaptation in PLDA scoring.

» The use of minimum divergence estimation of the prior distribution of speaker
factor in multi-session scoring.

3. Speaker adaptation in PLDA scoring

2. I-vector followed by PLDA

An i-vector represents a variable-length utterance with a fixed-length low
dimensional vector, estimated as the posterior mean of a latent variable [1]:
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A PLDA model is a Gaussian density with a structured covariance matrix [2]:

p(g) = N(mu,FFT +GG' +Z)

The score could also be calculated as the log-likelihood ratio between the
speaker-dependent PLDA model and the universal PLDA model:
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M In conventional PLDA scoring, the score is calculated as the log likelihood ratio
between two hypotheses (By-the-book scoring method):
H, : ¢, and {¢S,r:1 _____ R} are from the same speaker
M, ¢ and {4, .} are from different speakers
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4. Minimum Divergence Estimation of Speaker Prior

5.

For each enrollment session from the speaker s, we compute the mean and
covariance of the posterior distribution:
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We seek for another Gaussian distribution (the prior) that best represents the R
posterior distributions.

The Kullback-Leibler (KL) divergence [3] between the prior from the R posteriors,
defined as follows:
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The minimum divergence estimates could be expressed in closed form, as follows
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Experiment

NIST SRE’12 (Core task, CC2): one to over a hundred training segments per
speaker, probably with content overlap among different segments for the same
speaker.

NIST SRE’10 (8conv-core task, CC5): 8 training segments per speaker
For both tasks:

» Test segments are telephone speech collected under clean environment
» MFCC57, UBM 512, i-vector 400
Observations:

» By-the-book approach does not perform better than the other two
approaches.

» Comparing to Mean only, the benefit of MinDiv is not significant on SRE’10
while the results on SRE'12 show a clear benefit where the number of
enrolling segments for different speakers varies and the contents of the
enrolling segments for a speaker are highly correlated.

Table 1 Comparison of three speaker adaptation approaches on CC5 of NIST
SRE’10 8conv-core task

| EER(%) minDCF10 | minDCF12 |

By-the-book 0.8493 0.2476 0.1915
Mean 0.5194 0.1667 0.1446 5
MinDiv 0.7607 0.7607 0.1623 ?
By-the-book 2.9370 0.3289 0.2625 -
Mean 2.1379 0.3116 0.2546 %
MinDiv 2.4747 0.3720 0.3142 ®

Table2 Comparison of three speaker adaptation approaches on CC2 of NIST

SRE’12 core task.

| EER(%) minDCF10 | minDCF12 |

By-the-book 6.8953 0.6015 0.5394
Mean 3.9395 0.4765 0.4065 OE
MinDiv 3.5746 0.4238 0.3624 ®
By-the-book 6.4646 0.6338 0.5621 -
Mean 3.2145 0.5382 0.4440 %
MinDiv 3.0597 0.5235 0.4292 ®

6. Conclusion

M This paper presented an initial work on solving the multi-session PLDA scoring

from the perspective of model adaptation.

M Based on the idea of model adaptation, we propose an adaptation method

through a minimum divergence estimate of speaker prior.
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