Yunlong Jiao, Adam Gabryś, Georgi Tinchev, Bartosz Putrycz, Daniel Korzekwa, Viacheslav Klimkov

Motivation

- State-of-the-art neural vocoders are capable of synthesizing natural-sounding speech.
- Training high-quality neural vocoders requires significant computational resources and large amounts of audio data for each target speaker.
- Most existing neural vocoders are either speaker-dependent, or have not been evaluated sufficiently to support out-of-domain voices, styles, and languages.
- A high-quality speaker-independent vocoder, or so-called universal vocoder, is key to scaling up production of TTS systems.

Our contributions

- We trained a universal neural vocoder based on Parallel WaveNet, using a multi-speaker multi-lingual high-quality speech corpus.
- In order to train a universal vocoder, we propose an additional VAE-type conditioning network called **Audio Encoder**. Its architecture is inspired by the multi-scale discriminator of MelGAN.
- We performed extensive evaluation to show that our universal vocoder is state-of-the-art and capable of providing out-of-the-box support for new voices, styles, and languages.

Glossary

- UPW (ours): Universal Parallel WaveNet
- SDPW: Speaker-dependent Parallel WaveNet
- PWGAN: Parallel WaveGAN
- WGlow: WaveGlow
- UWRNN: Universal WaveRNN

We trained a Universal Parallel WaveNet (UPW) that serves all TTS voices, with an additional VAE-type conditioning network called Audio Encoder!

Note: At inference time, we use e = 0 to replace the output of AudioEncoder.

T a o

Take a picture to access the full paper on arXiv.org

Paper ID. 2386

UPW is a universal vocoder!

UPW vs. SDPW

Test set statistics:

Test set	Recording quality	# Voices (seen / unseen)	# Styles (seen / unseen)	# Lang. (seen / unseen)	# Utt. (all unseen)	Vocoder systems
Internal	Very high	24 (21/3)	16 (12/4)	13 (13/0)	3,124	UPW, SDPW

MUSHRA evaluation results:

MUSHRA	Recording	SDPW	UPW	UPW Relative	P-value
Internal	69.68	57.92	58.70	84.24%	0.000
MUSHRA per voice					
British Eng. / F / Adult	71.64	65.69	67.67	94.45%	0.000
Aus. Eng. / M / Adult	73.52	68.37	68.32	92.93%	1.000
Spanish / F / Adult	69.06	60.27	61.17	88.58%	0.668
Indian Eng. / F / Adult	77.19	62.22	66.95	86.74%	0.000
*US Eng. / M / Senior	70.40	57.65	60.12	85.40%	0.201
*US Eng. / M / Child	62.31	51.26	51.99	83.43%	1.000
US Eng. / M / Adult	68.58	52.63	55.46	80.87%	0.105
French / F / Senior	72.53	54.82	56.35	77.69%	0.002
US Spanish / F / Adult	73.71	48.07	48.37	65.62%	1.000
MUSHRA per style					
Emotional	71.59	60.74	61.40	85.76%	0.462
Neutral	69.13	58.53	58.73	84.95%	0.500
Conversational	58.65	43.54	47.61	81.18%	0.002
Long-form reading	68.60	56.69	55.46	80.85%	0.814
News briefing	75.24	56.29	59.86	79.55%	0.000
Singing	71.94	49.96	56.87	79.06%	0.000

Note: * marks unseen voices during training. P-value reports a two-sided T-test comparing UPW and SDPW.

UPW is a state-of-the-art vocoder!

SOLUTION UPW vs. PWGAN / WGlow / UWRNN

Test set statistics:

Test set	Recording quality	# Voices (seen / unseen)	# Styles (seen / unseen)	# Lang. (seen / unseen)	# Utt. (all unseen)	Vocoder systems
Internal	Very high	19 (15/4)	2 (1/1)	14 (14/0)	1,700	
LibriTTS clean	High	30 (0/30)	1 (1/0)	1 (1/0)	300	UPW, UWRNN,
LibriTTS other	Medium	30 (0/30)	1 (1/0)	1 (1/0)	300	PWGAN, WGlow
Common Voice	Low	300 (0/300)	1 (1/0)	15 (14/1)	300	

MUSHRA evaluation results:

MUSHRA	Recording	PWGAN	WGlow	UWRNN	UPW	UPW Relative	P-value
Internal	66.81	56.02	50.09	61.83	63.35	94.82%	0.000
LibriTTS clean	70.42	67.40	66.72	68.30	69.56	98.77%	0.000
LibriTTS other	68.91	65.04	64.15	63.83	67.28	97.64%	0.000
Common Voice	64.84	57.84	58.67	54.87	58.07	89.56%	0.015

Note: P-value reports a two-sided T-test comparing UPW and the best-among-the-rest vocoder.

