INTERNATIONAL AUDIO LABORATORIES ERLANGEN A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

ICASSP 2021

Adrian Herzog, Daniele Mirabilii, and Emanuël A.P. Habets

INTERNATIONAL AUDIO LABORATORIES ERLANGEN A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

A. Herzog

D. Mirabilii

- Introduction
- Problem Formulation
- Noise Reduction Methods
- Proposed Method
- Performance Evaluation

A. HERZOG et al

Introduction

- Problem Formulation
- Noise Reduction Methods
- Proposed Method
- Performance Evaluation

Introduction **Motivation**

Wind noise is an adverse acoustic condition in outdoor recordings

Degradation of sound quality and speech intelligibility

- Denoising in B-format signals
 - Suppress noise
 - Preserve the original spatial properties of the sound field

Introduction Motivation

Binauralized sample: headphones recommended!

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

Introduction Main idea

- Multi-channel wind noise reduction [Mirabilii and Habets, 2019]
 - Use of a Parametric Multi-channel Wiener Filter (PMWF)
 - Power Ratio (PR): noise reduction/speech distortion trade-off
- Direction-preserving noise reduction for Ambisonics ^[Herzog and Habets 2019]
 - PMWF matrix

A. HERZOG et al

- Beamform-and-project (BP)
- Direction-preserving (DP)

Mirabilii and Habets, "Multi-channel wind noise reduction using the Corcos model," ICASSP, UK, 2019.

Herzog and Habets, "Direction-preserving Wiener matrix filtering for Ambisonic input-output systems," ICASSP, UK, 2019.

Direction-preserving wind noise reduction of B-format signals

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

A. HERZOG et al

Introduction

Problem Formulation

- Noise Reduction Methods
- Proposed Method

Performance Evaluation

Problem Formulation A-format and B-format Signals

© AudioLabs, 2021 A. HERZOG et al

Problem Formulation Signal Model

- Speech source S
- B-format steering vector $\mathbf{b}(\Omega)$ (plane wave)
- Direction Ω
- Wind noise \mathbf{V}_B

Tasks

- Estimate desired component
- Reduce undesired component
- Preserve the spatial information of the original soundfield

- Introduction
- Problem Formulation

Noise Reduction Methods

Proposed Method

Performance Evaluation

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

Noise Reduction Methods Noise Reduction Using a Filter Matrix

Beamforming

$$Z = \mathbf{w}^H \mathbf{x}_B$$

- Single-channel output Z
- Beamformer W
- Z is an estimate of S

Multichannel-to-single-channel signal enhancement

No spatial information after beamforming

Matrix Spatial Filtering

$$\mathbf{z}_B = \mathbf{W}\mathbf{x}_B$$

- Multichannel output \mathbf{Z}_B
- Filter matrix ${f W}$
- \mathbf{z}_B is an estimate of $S \mathbf{b}(\Omega)$

Multichannel-to-multi-channel

signal enhancement

Spatial information can be preserved to some degree in output

Noise Reduction Methods

Matrix PMWF [Doclo and Moonen, 2002]

, PMWF beamformer

Beamform-and-project method $\mathbf{W}_{BP} = \mathbf{b}(\Omega) \mathbf{w}_{PMWF}^{H}$

- $\mathbf{w}_{\mathrm{PMWF}}$ contains trade-off parameter $\boldsymbol{\mu}$
 - Small μ : less speech distortion, less noise reduction
 - Large μ : high noise reduction but high speech distortion
- **Disadvantage:** residual noise projected to direction Ω

Partial noise reduction [Klasen et al., 2007]

A. HERZOG et al

- Mixing between filtered and unprocessed signal, $\mathbf{W}_{\mathrm{BP+PM}}$
- Partially preserves spatial distribution of noise

Doclo and Moonen, "GSVD-based optimal filtering for single and multimicrophone speech enhancement," *IEEE Trans. Signal Processing*, 2002.

Klasen et al., "Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues," *IEEE Trans. Signal Process.*, 2007.

Noise Reduction Methods

Direction-Preserving Method [Herzog and Habets, 2019]

- Optimally preserves directions of plane waves
- Direction-preserving filter matrix $\mathbf{W}_{\mathrm{DP}} = \mathbf{W}_{\mathrm{DP}}(\alpha_1, \alpha_2, ..., \alpha_Q)$ $\alpha_1, \alpha_2, ..., \alpha_Q$: directional gains for Q virtual sampling directions

Insert \mathbf{W}_{DP} in MPMWF cost function

- Optimal solution for $\alpha_1, \alpha_2, ..., \alpha_Q$
- Lower bound $lpha_{\min}$

Q=9 virtual sampling directions

In this work

A. HERZOG et al

Derived B-format expressions for \mathbf{W}_{DP} and $lpha_1, lpha_2, ..., lpha_Q$

Herzog and Habets, "Direction-preserving Wiener matrix filtering for Ambisonic input-output systems", ICASSP, UK, 2019.

- Introduction
- Problem Formulation
- Noise Reduction Methods
- Proposed Method

Performance Evaluation

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

Proposed Method Motivation

- In [Herzog and Habets, 2019]
 - Fixed trade-off parameter μ for Ambisonic-to-Ambisonic noise reduction

Problem: Wind-noise is highly time-varying

 $\rightarrow \mu$ which adapts to current signal statistics is desired

In [Mirabilii and Habets, 2019]

A. HERZOG et al

- Difference-to-sum power ratio used for μ in the context of beamforming and wind-noise reduction

In this work 1. Derivation of the dipole-to-omnidirectional power ratio2. Use as trade-off parameter for noise reduction

Mirabilii and Habets, "Multi-channel wind noise reduction using the Corcos Model," ICASSP, UK, 2019.

Herzog and Habets, "Direction-preserving Wiener matrix filtering for Ambisonic input-output systems", ICASSP, UK, 2019.

Proposed Method B-format Power Ratio

Dipole-to-omnidirectional power ratio
$$PR = \frac{g_o^2}{g_d^2} \frac{\phi_{\text{dip}}}{\phi_{\text{omni}}}$$

 g_o, g_d : arbitrary omnidirectional and dipole gains from B-format encoding

 $\phi_{\text{omni}} = \mathcal{E} \left\{ |X_{Bo}|^2 \right\} \text{ omnidirectional power}$ $\phi_{\text{dip}} = \mathcal{E} \left\{ |X_{Bx}|^2 + |X_{By}|^2 + |X_{Bz}|^2 \right\} \text{ dipole power}$ Statistical expectation

• For plane wave PR = 1

A. HERZOG et al

- For wind noise PR = 9 (spatially white assumption)
- "Windiness" parameter $\widetilde{PR} = \min\{\max\{(PR 1)/8, 0\}, 1\}$

- Proposed trade-off parameter $\mu = 1 +
ho \mathrm{PR}$

Adjustable scaling parameter

Proposed Method Windiness

 $\mu = 1 + \rho \, \widetilde{\mathrm{PR}} \, \overline{\hspace{-1.5mm}}^{\text{Windiness}}$

© AudioLabs, 2021 A. HERZOG et al ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

- Introduction
- Problem Formulation
- Noise Reduction Methods
- Proposed Method

Performance Evaluation

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

Performance Evaluation Experimental setup

- Wind noise recorded with an AMBEO VR mic (10 samples)
- 1 male and 1 female speaker
- 4 different directions Ω_i

A. HERZOG et al

➡ 80 test samples (0 dB of input SNR)

Performance Evaluation

Processing and Performance Measures

- Methods under test
 - $\mathbf{W}_{\mathrm{DP}}, \mathbf{W}_{\mathrm{BP}}, \mathbf{W}_{\mathrm{BP+PM}}$ for different scaling parameters ho
- Processing

- Short-time Fourier transform domain
- Recursive estimation of signal statistics
- Oracle speech direction
- Objective evaluation
 - Noise Reduction (NR)
 - Signal-to-Distortion Ratio (SDR)
 - Perceptual Evaluation of Speech Quality (PESQ)
 - Noise Angular Similarity

Performance Evaluation Results

© AudioLabs, 2021 A. HERZOG et al

ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS 23

Performance Evaluation Directional Distribution of Residual Noise

Audio samples: https://www.audiolabs-erlangen.de/resources/2021-ICASSP-BWNR

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

Summary

- Trade-off parameter of the PMWF matrix
 - Based on the dipole-to-omnidirectional power ratio
 - Adapts to fast-changing statistics of wind noise
 - Overall improvement of noise reduction, spatial preservation of the noise and speech quality compared to a fixed parameter
- Methods to reduce wind noise and preserve its spatial distribution
 - BP: + noise reduction and signal-to-distortion ratio
 - spatial preservation of the noise and speech quality
 - **BP+PM**: + spatial preservation of the noise
 - DP: + spatial preservation of the noise and speech quality
 signal-to-distortion ratio

© AudioLabs, 2021 ICASSP 2021 – DIRECTION PRESERVING WIND NOISE REDUCTION OF B-FORMAT SIGNALS

