SpeechWave

Speech Acoustic Modelling from Raw Phase Spectrum

Erfan Loweimi¹, Zoran Cvetkovic², Peter Bell¹ and Steve Renals¹

¹ Centre for Speech Technology Research (CSTR), University of Edinburgh

² King's College London

{e.loweimi, peter.bell, s.renals}@ed.ac.uk zoran.cvetkovic@kcl.ac.uk

Outline

- Pros of acoustic modelling using *raw* phase spectrum
- Architectures: Single-stream vs Multi-stream
- Fusion level in multi-stream modelling
- Experimental results
- Conclusion

Acoustic Modelling Using <u>Raw</u> Phase Spectrum

• Raw means using entire spectrum (frequency ≥ 0)

- If FFT size = 512 \rightarrow feature size = 257

- Advantages: Bypass feature engineering
 - Avoid inextricable information loss
 - Dealing with phase's complicated structure

WIVERS WIVERS KING'S LONDON

Raw Phase-based Representations

ICASSP 2021

Architecture -- Single-head

- Phase-based single stream info:

* wrapped, unwrapped, min-phase, source, filter phase spectra ...

* ... or their group delay

Architecture -- Multi-head

Architecture -- Multi-head

Single-Stream vs Multi-Stream

Single-Stream vs Multi-Stream

$$\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$$

Advantages of Multi-Stream: Decomposition-Recombination (1)

- Single-stream
 - Input: $Phase_{MinPhase} = 1 \times Phase_{VT} + 1 \times Phase_{Exc}$
 - Output: $h(Phase_{MinPhase}; \theta_h)$

Advantages of Multi-Stream: Decomposition-Recombination (1)

- Single-stream
 - Input: $Phase_{MinPhase} = 1 \times Phase_{VT} + 1 \times Phase_{Exc}$
 - Output: $h(Phase_{MinPhase}; \theta_h)$
- Multi-stream
 - Input: Phase_{VT} & Phase_{Exc} info streams
 - Output: $h([f(VT; \theta_f), g(Exc; \theta_g)]; \theta_h)$

concatenation

Advantages of Multi-Stream: Decomposition-Recombination (2)

- Each stream (VT & Exc) is weighted/gated properly
 - ... importance to the task
- Learning bespoke transforms for each stream
 - Optimal chain of transforms for each stream is different
- Information fusion at optimal level of abstraction
 - ... instead of additive fusion at input level, $Phase_{VT}$ + $Phase_{Exc}$

Multi-Stream Architecture

- Fusion@HigherLevels
 - More parameters
 - More pre-processing
 - Less post-processing

• Optimal Trade-off ???

Fusion@HigherLevels: Concat-0 $\rightarrow \dots \rightarrow$ Concat-3

Experimental Setup

- Models built using PyTorch-Kaldi
 - CNNs: 4 layers, 1D, LayerNorm, ReLU
 - FCs: 5 Layers, BatchNorm, ReLU
- Alignments: Kaldi
- Tasks/Measure: TIMIT/PER and WSJ/WER
- Phase-based Source-Filter Separation based on [20]
- MVN@SpeakerLevel; Append: ±5 context frames
- No data augmentation or rescoring with RNNLM

Experimental Results

TIMIT – Phone Recognition

Fable 1 . TIMIT PER for different front-ends			
-		Dev	Eval
-	MFCC	17.1	18.6
	FBank	16.3	18.2
	Mag	16.8	17.8
	$Mag^{0.1}$	15.9	17.6
-	Phase-Wrapped	21.6	23.7
	Phase-UnWrapped	29.6	31.8
	Phase-MinPh	16.8	18.6
	GD-MinPh	16.9	18.4
	GD-VT	18.2	19.3
	GD-Exc	31.3	32.3
-	Concat-0	16.8	18.4
	Concat-1	16.3	18.1
	Concat-2	16.2	18.0
-	Concat-3	17.0	18.4

WSJ – LVCSR

Table 2. WSJ WER for different front-ends.			
	Dev	Eval-92	Eval-93
MFCC	10.4	6.8	10.4
FBank	9.1	5.9	8.8
Mag	9.3	5.9	9.1
$Mag^{0.1}$	8.8	5.5	9.0
Phase-Wrapped	9.9	6.1	10.4
Phase-UnWrapped	13.1	8.9	16.4
Phase-MinPh	9.3	5.8	9.4
GD-MinPh	8.3	5.1	7.8
GD-VT	8.6	5.4	7.6
GD-Exc	12.2	8.5	13.2
Concat-0	8.2	4.9	7.8
Concat-1	7.9	4.8	7.4
Concat-2	8.1	4.8	7.7
Concat-3	8.2	5.0	8.1

Acoustic modelling using raw phase spectrum works ...

Discussion (1)

 Table 2. WSJ WER for different front-ends.

• Compared with magnitudebased features, comparable to better WERs are achieved using raw phase spectrum.

	Dev	1000000000000000000000000000000000000	$\frac{11 \text{ Crubs}}{\text{Eval}_03}$
MFCC	10.4	6.8	10.4
FBank	9.1	5.9	8.8
Mag	9.3	5.9	9.1
$Mag^{0.1}$	8.8	5.5	9.0
Phase-Wrapped	9.9	6.1	10.4
Phase-UnWrapped	13.1	8.9	16.4
Phase-MinPh	9.3	5.8	9.4
GD-MinPh	8.3	5.1	7.8
GD-VT	8.6	5.4	7.6
GD-Exc	12.2	8.5	13.2
Concat-0	8.2	4.9	7.8
Concat-1	7.9	4.8	7.4
Concat-2	8.1	4.8	7.7
Concat-3	8.2	5.0	8.1

Discussion (2)

- Decent WER for wrapped phase
- Unwrapping increases WER
 - Instability ...
- Using GD improves WER

 Table 2. WSJ WER for different front-ends.

	Dev	Eval-92	Eval-93
MFCC	10.4	6.8	10.4
FBank	9.1	5.9	8.8
Mag	9.3	5.9	9.1
$Mag^{0.1}$	8.8	5.5	9.0
Phase-Wrapped	9.9	6.1	10.4
Phase-UnWrapped	13.1	8.9	16.4
Phase-MinPh	9.3	5.8	9.4
GD-MinPh	8.3	5.1	7.8
GD-VT	8.6	5.4	7.6
GD-Exc	12.2	8.5	13.2
Concat-0	8.2	4.9	7.8
Concat-1	7.9	4.8	7.4
Concat-2	8.1	4.8	7.7
Concat-3	8.2	5.0	8.1

Discussion (3)

- Multi-stream outperforms single-stream
 - ... NO EXTRA INFO in multi-stream ...
- Optimal fusion level ↔
 Concat-1
 - Trade-off between ...
 - pre- & post-processing

 Table 2. WSJ WER for different front-ends.

	Dev	Eval-92	Eval-93
MFCC	10.4	6.8	10.4
FBank	9.1	5.9	8.8
Mag	9.3	5.9	9.1
$Mag^{0.1}$	8.8	5.5	9.0
Phase-Wrapped	9.9	6.1	10.4
Phase-UnWrapped	13.1	8.9	16.4
Phase-MinPh	9.3	5.8	9.4
GD-MinPh	8.3	5.1	7.8
GD-VT	8.6	5.4	7.6
GD-Exc	12.2	8.5	13.2
Concat-0	8.2	4.9	7.8
Concat-1	7.9	4.8	7.4
Concat-2	8.1	4.8	7.7
Concat-3	8.2	5.0	8.1

Conclusion

- **Goal**: Acoustic modelling using speech's raw phase spectrum
- Architectures:
 - Single-head \leftarrow raw Phase_{wrapped}, Ph_{unwrapped}, Ph_{MinPh}, Ph_{VT}, Ph_{Exc}
 - Multi-head/stream \leftarrow raw Source and Filter phase spectra
- Advantages of multi-stream approach & optimal fusion level discussed
- Tasks: Phone recognition (TIMIT), LVCSR (WSJ)
- **Future Work**: the proposed multi-stream phase-based approach is a general framework, potentially applicable to a wide range of tasks

That's it!

- Thanks for your attention!
- Q & A

- Appendices:
 - Source-filter separation in the phase domain
 - Group delay (GD)

Phase-based Source-Filter Separation (1)

$$x[n] = x_{VT}[n] * x_{Exc}[n]$$

$$\log |X(\omega)| = \log |X_{VT}(\omega)| + \log |X_{Exc}(\omega)|$$

$$\text{Hilbert Trans.} \quad \arg\{X_{MinPh}(\omega)\} = -\frac{1}{2\pi} \log |X(\omega)| * \cot(\frac{\omega}{2})$$

$$\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$$

$$\operatorname{GD}_{MinPh}(\omega) = \operatorname{GD}_{VT}(\omega) + \operatorname{GD}_{Exc}(\omega)$$

Source and Filter components are **additive** in the Log-Mag, Min-phase phase or group delay domains.

Phase-based Source-Filter Separation (2)

 $\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$

 $Phase_{Min-Ph} \equiv Trend + Fluctuation \equiv Filter (VT) + Source (Exc)$

Phase-based Source-Filter Separation (3)

$$\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$$

*Phase*_{Min-Ph} ≡ Trend + Fluctuation ≡ Filter (VT) + Source (Exc)

Phase-based Source-Filter Separation (3)

 $\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$

 $Phase_{Min-Ph} \equiv Trend + Fluctuation \equiv Filter (VT) + Source (Exc)$

Phase-based Source-Filter Separation (3)

$$\arg\{X_{MinPh}(\omega)\} = \arg\{X_{VT}(\omega)\} + \arg\{X_{Exc}(\omega)\}$$

For more details please refer to ...

Loweimi, Erfan (2018) Robust Phase-based Speech Signal Processing From Source-Filter Separation to Model-Based Robust ASR. PhD thesis, University of Sheffield.

Group Delay (GD) (1)

- Negative spectral derivative of phase spectrum
- Advantages ...

1) Additivity $\rightarrow x(t) * y(t) \equiv GD_X(\omega) + GD_Y(\omega)$

2) High spectral resolution

Group Delay (2)

- Advantages ...
 - 3) Similarity to mag spectrum for MinPhase signals
 - Similarity \rightarrow max@poles & min@zeros
 - $|X(\omega)|$ is replaceable with GD in the pipeline + some amendments

