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Problem: Lung Nodule Classification

Goal: Classifying CT-based lung nodule images (LIDC-IDRI) into three categories: benign
(score < 2.5), unsure (2.5 < score < 3.5) and malignant (score > 3.5).

Motivations:

e LExisting methods for lung nodule classification calculate the cross-entropy (CE) loss be-

Meta Ordinal Weighting Net (MOW-Net) & Experiments

The MOW-Net framework: Training & inference: Note that the MOS only
works In the training stage. The final goal of
the optimization is to obtain the optimal ©*.

From above equations, we have:
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Meta Ordinal Set (MOS) We assume that the ordinal relationship resides in not only the
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by the MOS, we propose an MCE loss to align the meta knowledge of each class to the corre-
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