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Audio source separation

. Audio signals are composed of several constitutive sounds: multiple

speakers, background noise, domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

. Automatic speech recognition (clean speech vs. noise).

. Rhythm analysis (drums vs. harmonic instruments).

. Time-stretching (transients vs. partials).

Time-frequency separation = acts on the

short-time Fourier transform (STFT).
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General framework

Transform Synthesis

Separation model
(NMF, DNN...)

1. Nonnegative representation, e.g., V = |STFT(x)|2.

2. Structured model, e.g., nonnegative matrix

factorization, deep neural networks.

3. Nonnegative masking and synthesis:

s̃j = STFT−1(Mj �X).

atoms

activations
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The phase problem

Nonnegative masking: ∠Sj = ∠X.

7 Issues in sound quality when sources overlap.

7 Inconsistency : Ŝj /∈ STFT(RN ).

Multiple Input Spectrogram Inversion (MISI) [Gunawan, 2010]

. Extends the Griffin-Lim algorithm to multiple signals by solving:

min
sj

J∑
j=1

Vj − |STFT(sj)|2 s.t.
J∑
j=1

sj = x.

3 Performance is improved over masking.

7 Euclidean distance is not the most appropriate in audio.

Goal

Extend MISI to non-quadratic losses for source separation.

Gunawan and Sen, Iterative phase estimation for the synthesis of separated sources from single-channel mixtures, IEEE SPL, 2010.
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Proposed method



Problem setting

Bregman divergences

Dψ(P |Q) =
∑
f,t

ψ(pf,t)− ψ(qf,t)− ψ′(qf,t)(pf,t − qf,t)

. The generating function ψ determines the divergence.

. Encompass the β-divergences, with particular cases: Euclidean (β = 2),

Kullback-Leibler (β = 1) and Itakura-Saito (β = 0) [Hennequin, 2011]

Problem formulation: min
sj

∑J
j=1 Cj(sj) s.t.

∑J
j=1 sj = x

. Accounting for the non-symmetry of Bregman divergences:

Cj(sj) = Dψ(Vj | |STFT(sj)|d)︸ ︷︷ ︸
“right” problem

or Dψ(|STFT(sj)|d |Vj)︸ ︷︷ ︸
“left” problem

. d = 1 (Vj are magnitudes) or d = 2 (Vj are power spectrograms).

Hennequin et al., Beta-divergence as a subclass of Bregman divergence, IEEE SPL, 2011.
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Projected gradient descent

min
sj

J∑
j=1

Cj(sj)︸ ︷︷ ︸
Data fitting

s.t.
J∑
j=1

sj = x︸ ︷︷ ︸
Mixing constraint

. The set defined by the mixing constraint is convex.

. The data fitting terms are independent from each other.

. Projected gradient descent:

yj ← sj − µ∇Cj(sj)

sj ← yj +
1

J

(
x−

J∑
i=1

yi

)

. Compute the gradient ∇Cj using the chain rule [Vial, 2021].

Vial et al., “Phase retrieval with Bregman divergences and application to audio signal recovery”, IEEE JSTSP, 2021.
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Algorithm overview

Initialization: Wiener-like mask: sj = STFT−1(V
1/d
j � ei∠X)

Update rules

STFT Sj = STFT(sj)

Compute the gradient Gj = ψ′′(|Sj |d)� (|Sj |d −Vj) (right)

Gj = ψ′(|Sj |d)− ψ′(Vj) (left)

Gradient descent Yj = Sj − µd× Sj � |Sj |d−2 �Gj

Inverse STFT yj = STFT−1(Yj)

Mixing sj = yj +
1
J

(
x−

∑J
i=1 yi

)
MISI is a particular case (quadratic loss, d = 1, and µ = 1):

Yj = Vj �
Sj
|Sj |
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Experiments



Protocol

Task: speech enhancement (J = 2), 100 mixtures:

. Clean speech from the VoiceBank dataset.

. Real-life noises from the DEMAND dataset (living room, bus, and public

square noises).

. Mixtures at various input SNR (−10, 0, and 10 dB).

Magnitude estimation

. Open-Unmix (a freely available pretrained Bi-LSTM network).

. The network is trained on different speakers and noises.

Split

. 50 mixtures for validation (tuning the step size µ).

. 50 mixtures for testing (MISI and the proposed algorithm, 5 iterations).
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Results

Signal-to-distortion ratio (improvement over the baseline amplitude mask):
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. The proposed method outperforms MISI when d = 2:

. At high/moderate input SNR when β > 1.

. At low input SNR for all β and the “left” problem.

. Performance peak around β = 1.25, close to Kullback-Leibler (β = 1).

. Results depend on the type of noise.
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Conclusion

Alternative divergences have some potential for phase retrieval in audio

source separation from highly corrupted spectrograms

Perspectives

. Alternative optimization schemes (majorization-minimization, ADMM).

. Inclusion within deep learning (e.g., with deep unfolding) for end-to-end

separation.

https://github.com/magronp/bregmisi
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