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Source separation

• Isolate individual sources from their mixture.
• Here: operate in the short-time Fourier transform

(STFT) domain.

General framework

Transform Synthesis

Separation model
(NMF, DNN...)

• Extract a nonnegative representation (magni-
tude/power spectrogram).

• Fit a structured model (nonnegative matrix factor-
ization, deep neural network).

• Mask the mixture to retrieve isolated sources Ŝj.
• Synthesize time-domain signals through inverse

STFT.

Phase recovery

Nonnegative masking → ∠Sj = ∠X.
• The phase of the mixture is assigned to each source.
• Issues in sound quality when the sources overlap in

the STFT domain.
Multiple Input Spectrogram Inversion (MISI) [1]

• Extends the Griffin-Lim algorithm to multiple sig-
nals in mixture models.

• Find time-domain sources sj whose magnitude is
close to the target value Vj by solving:

min
sj

J∑
j=1
∥Vj − |STFT(sj)|∥2 s.t.

J∑
j=1

sj = x.

Problem

The Euclidean distance is not the most appropriate
measure for audio spectrograms.

Proposed approach

Bregman divergences

Dψ(P |Q) =
∑

f,t
ψ(pf,t)− ψ(qf,t)− ψ′(qf,t)(pf,t− qf,t)

• ψ is a strictly-convex, continuously-differentiable
generating function.

• Encompass the β-divergences [2] and its particular
cases:

Euclidean (β = 2)
Kullback-Leibler (β = 1)
Itakura-Saito (β = 0)

β=0

β=1

β=2

β=3

Problem setting

min
sj

J∑
j=1
Cj(sj)︸ ︷︷ ︸

Data fitting

s.t.
J∑

j=1
sj = x︸ ︷︷ ︸

Mixing constraint

Accounting for the non-symmetry of Bregman
divergences:

Cj(sj) =

{
Dψ(Vj | |STFT(sj)|d) “right”
Dψ(|STFT(sj)|d |Vj) “left”

Accounting for variable nonnegative measurements:

d =

{
1 if Vj are magnitudes
2 if Vj are power spectrograms

Algorithm

• The set defined by the mixing constraint is convex.
• The gradients can be computed using the chain

rule as in [3].

Projected gradient descent

yj← sj − µ∇Cj(sj)

sj← yj +
1

J

x−
J∑

i=1
yi


µ is the step size.

Update rules

Starting from initial estimates, alternate the
following:

• Compute the STFT:
Sj = STFT(sj)

• Compute the gradient:

Gj =

{
Gj = ψ′′(|Sj|d)⊙ (|Sj|d −Vj) “right”
ψ′(|Sj|d)− ψ′(Vj) “left”

• Gradient descent:

Yj = Sj − µd× Sj ⊙ |Sj|d−2 ⊙Gj

• Inverse STFT:
yj = STFT−1(Yj)

• Mixing:

sj = yj +
1

J

x−
J∑

i=1
yi


Remark: MISI is a particular case (quadratic loss,
d = 1, and µ = 1).
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Experimental protocol

Speech enhancement (J = 2)
• Clean speech from the VoiceBank dataset.
• Real-life noises from the DEMAND dataset (living

room, bus, and public square noises).
• Mixtures at various input SNR (−10, 0, and 10 dB).

Magnitude estimation with Open-Unmix.
• A freely available Bi-LSTM network.
• Pretraining on different speakers and noises.

Metric: Signal-to-distortion ratio improvement over
the baseline amplitude mask (SDRi).

Results

Step size tuning (top: d = 1; bottom: d = 2)
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• Our method outperforms MISI when d = 2:
At high/moderate input SNR when β > 1.
At low input SNR for all β and the “left” problem.

• Performance peak around β = 1.25, close to
Kullback-Leibler (β = 1).

• Results depend on the type of noise.

Summary
• MISI is extended to Bregman divergences.
• Projected gradient descent algorithm.
• Alternative divergences are interesting when

spectrogram are highly degraded.


