

Source separation

- Isolate individual sources from their mixture.
- Here: operate in the short-time Fourier transform (STFT) domain.

General framework

- Extract a nonnegative representation (magnitude/power spectrogram).
- Fit a structured model (nonnegative matrix factorization, deep neural network).
- Mask the mixture to retrieve isolated sources \mathbf{S}_{i} .
- Synthesize time-domain signals through inverse STFT.

Phase recovery

Nonnegative masking $\rightarrow \angle \mathbf{S}_i = \angle \mathbf{X}$.

- The phase of the mixture is assigned to each source.
- Issues in sound quality when the sources overlap in the STFT domain.

Multiple Input Spectrogram Inversion (MISI) [1]

- Extends the Griffin-Lim algorithm to multiple signals in mixture models.
- Find time-domain sources \mathbf{s}_i whose magnitude is close to the target value \mathbf{V}_i by solving:

$$\min_{\mathbf{s}_j} \sum_{j=1}^J \|\mathbf{V}_j - |\mathrm{STFT}(\mathbf{s}_j)|\|^2 \text{ s.t. } \sum_{j=1}^J \mathbf{s}_j = \mathbf{x}.$$

Problem

The Euclidean distance is not the most appropriate measure for audio spectrograms.

Phase recovery with Bregman divergences for audio source separation

Paul Magron, Pierre-Hugo Vial, Thomas Oberlin, Cédric Févotte

CNRS, IRIT, Université de Toulouse, France

[1] Gunawan and Sen, "Iterative phase estimation for the synthesis of separated sources from single-channel mixtures", IEEE Signal [2] Hennequin et al., "Beta-divergence as a subclass of Bregman divergence", IEEE Signal Processing Letters, vol. 18, no. 2, pp. 83–86, Feb. 2011. [3] Vial et al., "Phase retrieval with Bregman divergences and application to audio signal recovery", IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 51–64, Jan. 2021.

Algorithm

• The set defined by the mixing constraint is convex. • The gradients can be computed using the chain rule as in [3].

Projected gradient descent

$$\mathbf{y}_{j} \leftarrow \mathbf{s}_{j} - \mu \nabla \mathcal{C}_{j}(\mathbf{s}_{j})$$
$$\mathbf{s}_{j} \leftarrow \mathbf{y}_{j} + \frac{1}{J} \left(\mathbf{x} - \sum_{i=1}^{J} \mathbf{y}_{i} \right)$$

 μ is the step size.

Update rules

- Starting from initial estimates, alternate the following:
- Compute the STFT:

$$\mathbf{S}_j = \mathrm{STFT}(\mathbf{s}_j)$$

• Compute the gradient:

$$\mathbf{G}_{j} = \begin{cases} \mathbf{G}_{j} = \psi''(|\mathbf{S}_{j}|^{d}) \odot (|\mathbf{S}_{j}|^{d} - \mathbf{V}_{j}) \text{ "right"} \\ \psi'(|\mathbf{S}_{j}|^{d}) - \psi'(\mathbf{V}_{j}) & \text{"left"} \end{cases}$$

• Gradient descent:

$$\mathbf{Y}_j = \mathbf{S}_j - \mu \mathbf{d} \times \mathbf{S}_j \odot |\mathbf{S}_j|^{\mathbf{d}-2} \odot \mathbf{G}_j$$

• Inverse STFT:

$$\mathbf{y}_j = \mathrm{STFT}^{-1}(\mathbf{Y}_j)$$

• Mixing:

$$\mathbf{s}_j = \mathbf{y}_j + \frac{1}{J} \left(\mathbf{x} - \sum_{i=1}^J \mathbf{y}_i \right)$$

Remark: MISI is a particular case (quadratic loss, d = 1, and $\mu = 1$).

Speech enhancement (J = 2)

Metric: Signal-to-distortion ratio improvement over the baseline amplitude mask (SDRi).

1.0 (qp) _{0.8} 0.4 -

ICASSP2021

Paper ID: 2371

Experimental protocol

• Clean speech from the VoiceBank dataset.

• Real-life noises from the DEMAND dataset (living room, bus, and public square noises).

• Mixtures at various input SNR (-10, 0, and 10 dB).

Magnitude estimation with Open-Unmix.

• A freely available Bi-LSTM network.

• Pretraining on different speakers and noises.

• Our method outperforms MISI when d = 2: At high/moderate input SNR when $\beta > 1$. At low input SNR for all β and the "left" problem. • Performance peak around $\beta = 1.25$, close to Kullback-Leibler ($\beta = 1$). • Results depend on the type of noise.

Summary

• MISI is extended to Bregman divergences. Projected gradient descent algorithm. Alternative divergences are interesting when spectrogram are highly degraded.