

Music recommendation

- A task at the core of commercial music streaming platforms (Spotify, Deezer...).
- Predict a set of items (=songs) that a user might be interested in.
- Main idea: exploiting *similarities* between users and/or items.

The cold-start issue [1]

New songs recently added to the catalogue do not have any listening history: recommendation cannot be based solely on users' similarities.

Main techniques

Collaborative filtering: Users with similar tastes in the past (collected data) will have similar tastes in the future (predictions).

Content-based-approaches: Users who liked some songs (collected data) will like songs with a similar content (predictions).

Content-aware recommendation: incorporate content as side information in collaborative filtering.

Collaborative filtering Content-based Content-aware filtering

Performance Cold-start

Problem

Usual content features do not have a clear musicrelated meaning: they might not be optimal for recommendation.

Leveraging the structure of musical preference in content-aware music recommendation

Paul Magron, Cédric Févotte

CNRS, IRIT, Université de Toulouse, France

Content-aware co	ollaborative filtering		
Data	Proposed content features	Data fro	
 Y = {y_{u,i}} ∈ ℝ^{U×I} = users / items interactions. For implicit feedback (here: playcounts) binarized data R is preferred. 	 Research in music psychology [2] shows that musical preference can be described using 3 factors: <i>Arousal</i>: is it energetic/intense or calm? <i>Valence</i>: is it sad or happy? 	SongsFilter	
Content-aware weighted matrix factorization [2]	 <i>Depth</i>: is it "sophisticated" or simple? Computing the AVD model: 		
$\mathbf{R} \approx \mathbf{W}^{T} \mathbf{H} \text{ with } \mathbf{h}_i \approx \phi(\mathbf{z}_i)$	- Collect a set of high-level features from acoustic descriptors \mathbf{x}_i using the Essentia toolbox.	Tasks	
 W ∈ ℝ^{K×U}: users preferences. H ∈ ℝ^{K×I}: songs attributes. 	 Perform a PCA (L = 3) with oblimin rotation. Correlations with high-level features: 		
 z_i ∈ ℝ^L : content vector extracted from low-level acoustic features x_i. φ : ℝ^L → ℝ^K mapping between content and item attributes. Here, linear mapping φ(z_i) = Bz_i 	Arousal Valence DepthRousing/Passionate 0.56 -0.11 -0.12 Fun/Cheerful -0.03 0.78 0.01 Humorous/Witty -0.05 0.63 0.12 Aggressive 0.63 -0.48 -0.02	 Keep (interation) Split 1 70 % 20 % 	

Estimation:

$$\min_{\mathbf{W},\mathbf{H},\mathbf{B}} \sum_{u,i} \boldsymbol{c}_{u,i} (\boldsymbol{r}_{u,i} - \mathbf{w}_u^\mathsf{T} \mathbf{h}_i)^2 \\ + \lambda_W \sum_u ||\mathbf{w}_u||^2 + \lambda_H \sum_i ||\mathbf{h}_i - \mathbf{B} \mathbf{z}_i||^2$$

- $c_{u,i}$ is a confidence weight computed from the raw playcount $y_{u,i}$.
- Alternating least squares: iterative estimation procedure with closed-form updates.

Method

Training

- Extract the AVD factors for all song.
- Incorporate it as content feature \mathbf{z}_i in weighted matrix factorization.
- Train the model to learn W and B (and H).

Testing (for cold-start recommendation)

- For a novel song, extract its AVD factors \mathbf{z}_i .
- Perform predictions through: $\hat{r}_{u,i} = \mathbf{w}_{i}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{i}$.

References

[1] Schedl et al., "Current challenges and visions in music recommender systems research", International Journal of Multimedia Information Retrieval, vol. 7, no. 2, pp. 95–116, June 2018.

[2] Liang et al., "Content-aware collaborative music recommendation using pre-trained neural networks", Proc. ISMIR, October 2015. [3] Fricke et al., "Measuring musical preferences from listening behavior: Data from one million people and 200,000 songs", *Psychology*

of Music, September 2019.

Aggressive	0.63	-0.48	-0.02
Нарру	0.52	0.37	-0.36
Party	0.69	0.05	0.40
Relaxed	-0.84	0.01	0.14
Sad	-0.80	0.07	-0.21
Acoustic	-0.78	0.04	-0.25
Average loudness	0.59	0.14	-0.07
Danceable	0.23	0.42	0.52
Dissonance	0.86	-0.03	-0.04
Dynamic complexity	-0.57	0.07	0.21
Electronic	0.08	-0.01	0.74
Instrumental	-0.35	-0.06	0.23
Tonal	0.04	0.15	-0.60

ICASSP2021

Paper ID: 1629

Experiments

from the Million Song dataset:

gs whose Essentia features are available. er out inactive user/songs.

# users	9,132
# songs	7,674
# playcounts	247, 414
% playcounts	0.35

atrix prediction = traditional recommendation.

ep songs (95%) for which some listening history eractions with users) is available.

the playcounts:

% for training the model.

• 20 % for tuning the hyperparameters (λ_W and λ_H). • 10 % for in-matrix testing.

Out-of-matrix = cold-start recommendation.

• Predictions on the 5 % remaining songs on which the model is not trained.

Results measured with the normalized discounted cumulative gain $(\in [0, 1])$, higher is better.

	In-matrix	Out-of-matrix
Pure collaborative filtering	0.35	
Pure content		0.19
Proposed (content-aware)		
Essentia (before PCA)	0.36	0.22
AVD (after PCA)	0.35	0.21

• Similar performance for in-matrix recommendation. • The AVD features allows to address the cold-start problem.

• Content-aware filtering > pure content-based approach for cold-start recommendation.

• Slight performance drop when performing dimensionality reduction.

Summary

The AVD model of musical preference is useful for cold-start recommendation.

A light framework with a compact and and meaningful set of features.