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CNRS, IRIT, Université de Toulouse, France



Introduction

Multiple Input Spectrogram Inversion

Experiments



Introduction



Audio source separation

. Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

. Automatic speech recognition (clean speech vs. noise).

. Rhythm analysis (drums vs. harmonic instruments).

. Time-stretching (transients vs. partials).

Time-frequency separation = acts on the short-time Fourier

transform (STFT).
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General framework

Transform Synthesis

Separation model
(NMF, DNN...)

1. Nonnegative representation, e.g., V = |STFT(x)|2.

2. Structured model, e.g., nonnegative matrix factorization, deep

neural networks.

3. Nonnegative masking and synthesis: s̃j = STFT−1(Mj �X).

The phase problem ∠Sj = ∠X

7 Issues in sound quality when sources overlap.

7 Inconsistency : Ŝj /∈ STFT(RN ).

atoms

activations
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atoms

activations

3



Multiple Input Spectrogram

Inversion



Algorithm overview

Multiple Input Spectrogram Inversion (MISI) [Gunawan, 2010]:

. Extends the Griffin-Lim algorithm to multiple sources in mixture models.

. Iterate the following updates on top of initial estimates:

STFT Sj = STFT(sj)

Magnitude modification Yj = Vj � Sj

|Sj |
Inverse STFT yj = iSTFT(Yj)

Mixing sj = yj +
1
J

(
x−

∑J
i=1 yi

)

3 Performance (post-processing, unfolded within end-to-end networks).

7 Convergence is only observed (no guarantee).

7 Offline processing, not applicable in real-time.

Gunawan and Sen, Iterative phase estimation for the synthesis of separated sources from single-channel mixtures, IEEE SPL, 2010.
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MISI derivation

Time-frequency formulation

. Main objective: reduce the magnitude mismatch |||Sj | −Vj ||2.

. Enforce consistency: Sj = STFT(STFT−1(Sj)).

. Enforce a mixing constraint: X =
∑J

j=1 Sj

7 An ill-posed problem.

Time-domain formulation min
sj

∑J
j=1 ‖Vj − |STFT(sj)|‖2 s.t.

∑J
j=1 sj = x.

Majorization-minimization algorithm:

. Majorize the data fitting term:

‖Vj − |STFT(sj)|‖2 ≤ ‖Yj − STFT(sj)‖2 with |Yj | = Vj

. Incorporate the constraints using Lagrange multipliers.

. Find a saddle point for the majorizing function: 3 MISI with a convergence guarantee.

Wang et al., A Modified Algorithm for Multiple Input Spectrogram Inversion, Proc. Interspeech, 2019.
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Online MISI (oMISI)

Problem: MISI involves the inverse STFT, which does not operate online:

s′j,t = iDFT(Sj,t)�w and sj(n) =
T−1∑
t=0

s′j,t(n− tl)

Approach: Only account for a limited amount of future time frames [Zhu, 2007]

. Split the overlap-add around the current frame:

sj(n) =
t−1∑
k=0

s′j,k(n− tl)︸ ︷︷ ︸
past frames

+
∑
k=t

s′j,k(n− tl)︸ ︷︷ ︸
present and future frames

. Only use K look-ahead future frames.

STFT frame

windowing

iDFT and

windowing
and DFT

STFT
modi�cations

overlap
add

Mag. Phase

Zhu et al., Real-time signal estimation from modified short-time Fourier transform magnitude spectra, IEEE TASLP, 2007.
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Initialization with the sinusoidal phase

oMISI allows for using alternative initialization schemes.

Sinusoidal model

. Model each source as a sum of sinusoids.

. The phase is given by:

φf,t = φf,t−1 + 2π νf,t︸︷︷︸
normalized frequency

Sinusoids Linear phase

Frequency estimation with quadratric interpolation arround each frequency peak.
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Experiments



Protocol

Task

. Speech separation (J = 2) from the Danish HINT dataset.

. Three speaker pairs (male+male, female+female, and male+female).

Two scenarios

. “Oracle”: ground truth magnitudes.

. “Estim”: magnitudes are estimated using a DNN [Naithani, 2017].

Baselines

. Amplitude mask (AM).

. MISI (offline).

Metric: Scale-invariant signal-to-distortion ratio improvement (SI-SDRi, higher is better).

Naithani et al., Low latency sound source separation using convolutional recurrent neural networks, Proc. IEEE WASPAA, 2007.
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MISI convergence

In the Estim scenario:

5 10 15
Iterations

1.0

1.2

1.4

1.6

1.8

2.0
log(Error)

5 10 15
Iterations

7.3

7.4

7.5

7.6

7.7

SI-SDRi (dB)

. Convergence is confirmed experimentally.

. Performance (SI-SDRi) saturates at around 15 iterations (but further increases in the Oracle

scenario).

. oMISI will use 15/(K + 1) iterations for a fair comparison.
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oMISI performance

With 50 % overlap:

Male+Female Male+Male Female+Female

Latency Estim Oracle Estim Oracle Estim Oracle

AM 16 ms 7.5 8.8 5.7 7.3 5.1 7.5

MISI offline 7.9 23.8 6.2 22.3 5.4 22.9

oMISI - mix 16 ms (K=0) 7.7 16.4 6.1 15.8 5.4 16.9

24 ms (K=1) 7.9 20.2 6.2 19.4 5.4 19.6

32 ms (K=2) 7.9 21.4 6.2 20.4 5.4 20.6

oMISI - sin 24 ms (K=1) 7.8 15.2 6.2 14.6 5.4 20.7

. MISI > AM → room for improvement for phase recovery.

. oMISI with K = 1 performs as well as MISI (in the Estim. scenario).

. The optimal K depends on the overlap ratio (e.g., K = 3 for 75 %).

. The sinusoidal initialization is only interesting in a specific setting.
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Conclusion

Contributions

. A rigorous derivation of MISI with a convergence guarantee.

. An online implementation with competitive separation performance and reduced latency.

Perspectives

. Alternative loss functions (see our other ICASSP paper!)

. Inclusion within deep learning for end-to-end separation.

https://github.com/magronp/omisi

https://magronp.github.io/demos/spl20 omisi.html

P. Magron, T. Virtanen, “Online spectrogram inversion for low-latency audio source separation”, IEEE

Signal Processing Letters, January 2020.

11


	Introduction
	Multiple Input Spectrogram Inversion
	Experiments

