Online spectrogram inversion for low-latency audio source separation

Paul Magron, Tuomas Virtanen

CNRS, IRIT, Université de Toulouse, France

ICASSP2021

Introduction

Multiple Input Spectrogram Inversion

Experiments

Introduction

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments... Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

- ▷ Automatic speech recognition (clean speech vs. noise).
- ▷ Rhythm analysis (drums vs. harmonic instruments).
- ▷ Time-stretching (transients vs. partials).

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

- ▷ Automatic speech recognition (clean speech vs. noise).
- ▷ Rhythm analysis (drums vs. harmonic instruments).
- ▷ Time-stretching (transients vs. partials).

Time-frequency separation = acts on the short-time Fourier transform (STFT).

1. Nonnegative representation, e.g., $\mathbf{V} = |\mathsf{STFT}(\mathbf{x})|^2$.

- 1. Nonnegative representation, e.g., $\mathbf{V} = |\mathsf{STFT}(\mathbf{x})|^2$.
- **2.** Structured model, e.g., nonnegative matrix factorization, deep neural networks.

- 1. Nonnegative representation, e.g., $\mathbf{V} = |\mathsf{STFT}(\mathbf{x})|^2$.
- **2.** Structured model, e.g., nonnegative matrix factorization, deep neural networks.
- **3.** Nonnegative masking and synthesis: $\tilde{\mathbf{s}}_j = \mathsf{STFT}^{-1}(\mathbf{M}_j \odot \mathbf{X})$.

- 1. Nonnegative representation, e.g., $\mathbf{V} = |\mathsf{STFT}(\mathbf{x})|^2.$
- **2.** Structured model, e.g., nonnegative matrix factorization, deep neural networks.
- **3.** Nonnegative masking and synthesis: $\tilde{\mathbf{s}}_j = \mathsf{STFT}^{-1}(\mathbf{M}_j \odot \mathbf{X})$.

The phase problem $\angle \mathbf{S}_j = \angle \mathbf{X}$

- X Issues in sound quality when sources overlap.
- × Inconsistency: $\hat{\mathbf{S}}_j \notin \mathsf{STFT}(\mathbb{R}^N)$.

Multiple Input Spectrogram Inversion

Algorithm overview

Multiple Input Spectrogram Inversion (MISI) [Gunawan, 2010]:

- ▷ Extends the Griffin-Lim algorithm to multiple sources in mixture models.
- ▷ Iterate the following updates on top of initial estimates:

STFT	$\mathbf{S}_j = STFT(\mathbf{s}_j)$
Magnitude modification	$\mathbf{Y}_j = \mathbf{V}_j \odot rac{\mathbf{S}_j}{ \mathbf{S}_j }$
Inverse STFT	$\mathbf{y}_j = iSTFT(\mathbf{Y}_j)$
Mixing	$\mathbf{s}_j = \mathbf{y}_j + rac{1}{J} \left(\mathbf{x} - \sum_{i=1}^J \mathbf{y} ight)$

Gunawan and Sen, Iterative phase estimation for the synthesis of separated sources from single-channel mixtures, IEEE SPL, 2010.

Algorithm overview

Multiple Input Spectrogram Inversion (MISI) [Gunawan, 2010]:

- > Extends the Griffin-Lim algorithm to multiple sources in mixture models.
- ▷ Iterate the following updates on top of initial estimates:

STFT	$\mathbf{S}_j = STFT(\mathbf{s}_j)$
Magnitude modification	$\mathbf{Y}_j = \mathbf{V}_j \odot rac{\mathbf{S}_j}{ \mathbf{S}_j }$
Inverse STFT	$\mathbf{y}_j = iSTFT(\mathbf{Y}_j)$
Mixing	$\mathbf{s}_j = \mathbf{y}_j + rac{1}{J} \left(\mathbf{x} - \sum_{i=1}^J \mathbf{y}_i ight)$

- ✓ Performance (post-processing, unfolded within end-to-end networks).
- X Convergence is only observed (no guarantee).
- **X** Offline processing, not applicable in real-time.

Gunawan and Sen, Iterative phase estimation for the synthesis of separated sources from single-channel mixtures, IEEE SPL, 2010.

Time-frequency formulation

- \triangleright Main objective: reduce the magnitude mismatch $|||\mathbf{S}_j| \mathbf{V}_j||^2$.
- ▷ Enforce consistency: $\mathbf{S}_j = \mathsf{STFT}(\mathsf{STFT}^{-1}(\mathbf{S}_j)).$

 $\triangleright\,$ Enforce a mixing constraint: $\mathbf{X} = \sum_{j=1}^J \mathbf{S}_j$

Time-frequency formulation

- \triangleright Main objective: reduce the magnitude mismatch $|||\mathbf{S}_j| \mathbf{V}_j||^2$.
- ▷ Enforce consistency: $\mathbf{S}_j = \mathsf{STFT}(\mathsf{STFT}^{-1}(\mathbf{S}_j)).$
- \triangleright Enforce a mixing constraint: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$
 - X An ill-posed problem.

Time-frequency formulation

- \triangleright Main objective: reduce the magnitude mismatch $|||\mathbf{S}_j|-\mathbf{V}_j||^2.$
- \triangleright Enforce consistency: $\mathbf{S}_j = \mathsf{STFT}(\mathsf{STFT}^{-1}(\mathbf{S}_j)).$
- \triangleright Enforce a mixing constraint: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$
 - X An ill-posed problem.

Time-domain formulation
$$\min_{\mathbf{s}_j} \sum_{j=1}^J \|\mathbf{V}_j - |\mathsf{STFT}(\mathbf{s}_j)|\|^2 ext{ s.t. } \sum_{j=1}^J \mathbf{s}_j = \mathbf{x}.$$

Time-frequency formulation

- $\triangleright\,$ Main objective: reduce the magnitude mismatch $|||\mathbf{S}_j|-\mathbf{V}_j||^2.$
- ▷ Enforce consistency: $\mathbf{S}_j = \mathsf{STFT}(\mathsf{STFT}^{-1}(\mathbf{S}_j)).$
- \triangleright Enforce a mixing constraint: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$
 - X An ill-posed problem.

Time-domain formulation $\min_{\mathbf{s}_j} \sum_{j=1}^J \|\mathbf{V}_j - |\mathsf{STFT}(\mathbf{s}_j)|\|^2 \text{ s.t. } \sum_{j=1}^J \mathbf{s}_j = \mathbf{x}.$

Majorization-minimization algorithm:

 \triangleright Majorize the data fitting term:

$$\|\mathbf{V}_j - |\mathsf{STFT}(\mathbf{s}_j)|\|^2 \le \|\mathbf{Y}_j - \mathsf{STFT}(\mathbf{s}_j)\|^2$$
 with $|\mathbf{Y}_j| = \mathbf{V}_j$

- ▷ Incorporate the constraints using Lagrange multipliers.
- $\triangleright\,$ Find a saddle point for the majorizing function: $\checkmark\,$ MISI with a convergence guarantee.

Time-frequency formulation

- $\triangleright\,$ Main objective: reduce the magnitude mismatch $|||\mathbf{S}_j|-\mathbf{V}_j||^2.$
- ▷ Enforce consistency: $\mathbf{S}_j = \mathsf{STFT}(\mathsf{STFT}^{-1}(\mathbf{S}_j)).$
- \triangleright Enforce a mixing constraint: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$
 - X An ill-posed problem.

Time-domain formulation $\min_{\mathbf{s}_j} \sum_{j=1}^J \|\mathbf{V}_j - |\mathsf{STFT}(\mathbf{s}_j)|\|^2 \text{ s.t. } \sum_{j=1}^J \mathbf{s}_j = \mathbf{x}.$

Majorization-minimization algorithm:

 \triangleright Majorize the data fitting term:

$$\|\mathbf{V}_j - |\mathsf{STFT}(\mathbf{s}_j)|\|^2 \le \|\mathbf{Y}_j - \mathsf{STFT}(\mathbf{s}_j)\|^2$$
 with $|\mathbf{Y}_j| = \mathbf{V}_j$

- ▷ Incorporate the constraints using Lagrange multipliers.
- $\triangleright\,$ Find a saddle point for the majorizing function: $\checkmark\,$ MISI with a convergence guarantee.

Wang et al., A Modified Algorithm for Multiple Input Spectrogram Inversion, Proc. Interspeech, 2019.

Problem: MISI involves the inverse STFT, which does not operate online:

$$\mathbf{s}_{j,t}' = \mathrm{i}\mathsf{DFT}(\mathbf{S}_{j,t}) \odot \mathbf{w}$$
 and $\mathbf{s}_j(n) = \sum_{t=0}^{T-1} \mathbf{s}_{j,t}'(n-tl)$

Problem: MISI involves the inverse STFT, which does not operate online:

$$\mathbf{s}_{j,t}' = \mathsf{i}\mathsf{DFT}(\mathbf{S}_{j,t}) \odot \mathbf{w}$$
 and $\mathbf{s}_j(n) = \sum_{t=0}^{T-1} \mathbf{s}_{j,t}'(n-tl)$

Approach: Only account for a limited amount of future time frames [Zhu, 2007]

Zhu et al., Real-time signal estimation from modified short-time Fourier transform magnitude spectra, IEEE TASLP, 2007.

Problem: MISI involves the inverse STFT, which does not operate online:

$$\mathbf{s}_{j,t}' = \mathsf{i}\mathsf{DFT}(\mathbf{S}_{j,t}) \odot \mathbf{w}$$
 and $\mathbf{s}_j(n) = \sum_{t=0}^{T-1} \mathbf{s}_{j,t}'(n-tl)$

Approach: Only account for a limited amount of future time frames [Zhu, 2007]

▷ Split the overlap-add around the current frame:

Zhu et al., Real-time signal estimation from modified short-time Fourier transform magnitude spectra, IEEE TASLP, 2007.

Problem: MISI involves the inverse STFT, which does not operate online:

$$\mathbf{s}_{j,t}' = \mathsf{i}\mathsf{DFT}(\mathbf{S}_{j,t}) \odot \mathbf{w}$$
 and $\mathbf{s}_j(n) = \sum_{t=0}^{T-1} \mathbf{s}_{j,t}'(n-tl)$

Approach: Only account for a limited amount of future time frames [Zhu, 2007]

▷ Split the overlap-add around the current frame:

 \triangleright Only use K look-ahead future frames.

Zhu et al., Real-time signal estimation from modified short-time Fourier transform magnitude spectra, IEEE TASLP, 2007.

Initialization with the sinusoidal phase

oMISI allows for using alternative initialization schemes.

oMISI allows for using alternative initialization schemes.

Sinusoidal model

- ▷ Model each source as a sum of sinusoids.
- \triangleright The phase is given by:

$$\phi_{f,t} = \phi_{f,t-1} + 2\pi \underbrace{\nu_{f,t}}_{\text{normalized frequency}}$$

oMISI allows for using alternative initialization schemes.

Sinusoidal model

- ▷ Model each source as a sum of sinusoids.
- \triangleright The phase is given by:

$$\phi_{f,t} = \phi_{f,t-1} + 2\pi \underbrace{\nu_{f,t}}_{\text{normalized frequency}}$$

Frequency estimation with quadratric interpolation arround each frequency peak.

Experiments

Protocol

Task

- \triangleright Speech separation (J = 2) from the Danish HINT dataset.
- ▷ Three speaker pairs (male+male, female+female, and male+female).

Two scenarios

- ▷ "Oracle": ground truth magnitudes.
- ▷ "Estim": magnitudes are estimated using a DNN [Naithani, 2017].

Baselines

- ▷ Amplitude mask (AM).
- ▷ MISI (offline).

Metric: Scale-invariant signal-to-distortion ratio improvement (SI-SDRi, higher is better).

Naithani et al., Low latency sound source separation using convolutional recurrent neural networks, Proc. IEEE WASPAA, 2007.

MISI convergence

In the Estim scenario:

- ▷ Convergence is confirmed experimentally.
- ▷ Performance (SI-SDRi) saturates at around 15 iterations (but further increases in the Oracle scenario).
- $\triangleright\,$ oMISI will use 15/(K+1) iterations for a fair comparison.

oMISI performance

With 50 % overlap:

		Male+Female	Male+Male	Female+Female	
	Latency	Estim Oracle	Estim Oracle	Estim Oracle	
AM	$16 \mathrm{ms}$	7.5 8.8	5.7 7.3	5.1 7.5	
MISI	offline	7.9 23.8	6.2 22.3	5.4 22.9	

 $\triangleright~\mathsf{MISI}>\mathsf{AM}\to\mathsf{room}$ for improvement for phase recovery.

oMISI performance

With 50 % overlap:

		Male+Female		Male+Male		Female+Female	
	Latency	Estim Oracle		Estim Oracle		Estin	n Oracle
AM	$16 \mathrm{ms}$	7.5	8.8	5.7	7.3	5.1	7.5
MISI	offline	7.9	23.8	6.2	22.3	5.4	22.9
oMISI - mix	16 ms (K=0)	7.7	16.4	6.1	15.8	5.4	16.9
	$24 \text{ ms} (K{=}1)$	7.9	20.2	6.2	19.4	5.4	19.6
	32 ms (K=2)	7.9	21.4	6.2	20.4	5.4	20.6

 $\triangleright~\text{MISI} > \text{AM} \rightarrow$ room for improvement for phase recovery.

- \triangleright oMISI with K = 1 performs as well as MISI (in the Estim. scenario).
 - \triangleright The optimal K depends on the overlap ratio (e.g., K = 3 for 75 %).

oMISI performance

With 50 % overlap:

		Male+Female		Male+Male		Female+Female	
	Latency	Estim	n Oracle	Estim	Oracle	Estim	Oracle
AM	$16 \mathrm{ms}$	7.5	8.8	5.7	7.3	5.1	7.5
MISI	offline	7.9	23.8	6.2	22.3	5.4	22.9
oMISI - mix	16 ms (K=0)	7.7	16.4	6.1	15.8	5.4	16.9
	24 ms (K=1)	7.9	20.2	6.2	19.4	5.4	19.6
	32 ms (K=2)	7.9	21.4	6.2	20.4	5.4	20.6
oMISI - sin	24 ms (K=1)	7.8	15.2	6.2	14.6	5.4	20.7

 $\triangleright~MISI > AM \rightarrow$ room for improvement for phase recovery.

- \triangleright oMISI with K = 1 performs as well as MISI (in the Estim. scenario).
 - \triangleright The optimal K depends on the overlap ratio (e.g., K = 3 for 75 %).
- \triangleright The sinusoidal initialization is only interesting in a specific setting.

Contributions

- \triangleright A rigorous derivation of MISI with a convergence guarantee.
- ▷ An online implementation with competitive separation performance and reduced latency.

Perspectives

- ▷ Alternative loss functions (see our other ICASSP paper!)
- \triangleright Inclusion within deep learning for end-to-end separation.
 - https://github.com/magronp/omisi
 - https://magronp.github.io/demos/spl20_omisi.html

P. Magron, T. Virtanen, "Online spectrogram inversion for low-latency audio source separation", IEEE Signal Processing Letters, January 2020.