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Introduction

Problem
• Many source separation techniques act on spectrograms (e.g. NMF).
• Phase recovery is necessary for time-domain signal synthesis.
• Traditional estimators (e.g. Wiener filtering) assume a uniform phase.

Our approach
A probabilistic model with non-uniform phase.
• Von Mises phase (non-tractable) → Anisotropic Gaussian model.
• Exploit a phase prior based on a sinusoidal model.
• Compute an estimator of the sources.

Von Mises mixture model

X ∈ CF×T : Short-Term Fourier Transform of a mixture of K sources:

X =
∑
k

Zk =
∑
k

Vke
iφk .

Vk is deterministic (assumed known or estimated beforehand).

Von Mises (VM) phase

φk ∼ VM( µk︸︷︷︸
Location

, κk︸︷︷︸
Concentration

)

+ Max entropy distribution;
+ A tractable PDF:

p(φ|µ, κ) =
eκ cos(φ−µ)

2πI0(κ)
.
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Phase unwrapping prior
Each source is modeled as a

∑
of sinusoids [1]:

• Frequency peaks are estimated with QIFFT;
• Each channel f is assigned to one sine frequency νk(f, t);
• Phase unwrapping:

µk(f, t) = µk(f, t− 1) + 2πSνk(f, t).

Main drawback
A non-tractable likelihood → costly numerical methods (MCMC).

→ Approximate the VM model by a Gaussian model which
keeps the phase dependencies.

Anisotropic Gaussian model

Anisotropic Gaussian (AG) sources:

Xk ∼ N ( mk︸︷︷︸
Mean

, γk︸︷︷︸
Variance

, ck︸︷︷︸
Relation

), Γk =

(
γk ck
c̄k γk

)
.

Key idea: the moments are the same ones in VM and AG models.

Von Mises with cst. magnitude
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Anisotropic Gaussian
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Mixture: X =
∑
kXk ∼ N (mX , γX , cX) with

(mX , γX , cX ,ΓX) =
∑
k

(mk, γk, ck,Γk).

Source separation

Estimator of the sources
MMSE estimator X̂k = E(Xk|X).
For Gaussian mixtures:

X̂k = mk + ΓkΓ−1
X (X −mX) where u =

(
u
ū

)
. (1)

• Conservative:
∑
k X̂k = X;

• When κ→ 0: Wiener filtering V 2
k∑

l V
2
l
X!

→ Optimal combination of prior and mixture phases.

Source separation procedure
1 Phase from previous estimate: µk(f, t) = ∠X̂k(f, t− 1) + 2πSνk(f, t);
2 MMSE estimator given by (1);
3 Proceed to next frame.

Experimental results
• 100 songs from the Demixing Secrets Database, K = 4 sources;
• Separation quality measured with the SDR/SIR/SAR (in dB).

Influence of the concentration parameter

• Constant concentration:

κk(f, t) = κ;

• Optimal κ tuned on the
learning database (50 songs);
• For a range of κ: better re-
sults than with Wiener.
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Source separation
• Test database (50 songs).
• Methods: Wiener, Consistent Wiener [2] or proposed (MMSE).

Oracle magnitudes Approx. magnitudes
SDR SIR SAR SDR SIR SAR

Wiener 9.1 16.4 10.4 7.9 14.5 9.3
Consistent Wiener 11.1 19.7 12.0 8.8 16.3 10.1

MMSE 9.8 18.1 10.8 8.0 15.1 9.3

+ Better results than with Wiener;
− Slightly worse results than with Consistent Wiener in terms of
SDR/SIR/SAR but not in simple listening tests;
+ Significantly faster than Consistent Wiener (≈ ×7).

Conclusion
Model-based prior phase information
→ efficient source separation procedure.

Future research
• Refinement of onset phase estimation;
• Modeling the uncertainty about the magnitude estimates;
• Joint estimation of magnitudes and phases: novel Complex NMF.
References
[1] P. Magron, R. Badeau and B. David, "Phase reconstruction of spectrograms with

linear unwrapping: application to audio signal restoration", EUSIPCO 2015.
[2] J. Le Roux and E. Vincent, "Consistent Wiener filtering for audio source sepa-

ration", IEEE SPL 2013.


