

Phase-dependent anisotropic Gaussian model for audio source separation

Paul MAGRON, Roland BADEAU, Bertrand DAVID LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

Problem

- Many source separation techniques act on spectrograms (e.g. NMF).
- Phase recovery is necessary for time-domain signal synthesis.
- Traditional estimators (e.g. Wiener filtering) assume a uniform phase.

Our approach

- A probabilistic model with **non-uniform** phase.
- Von Mises phase (non-tractable) \rightarrow Anisotropic Gaussian model.
- Exploit a phase prior based on a sinusoidal model.
- Compute an estimator of the sources.

Source separation

Estimator of the sources MMSE estimator $\hat{X}_k = \mathbb{E}(X_k | X).$ For Gaussian mixtures:

$$\underline{\hat{X}}_k = \underline{m}_k + \Gamma_k \Gamma_X^{-1} (\underline{X} - \underline{m}_X) \text{ where } \underline{u} = \begin{pmatrix} u \\ \overline{u} \end{pmatrix}$$

(1)

• Conservative: $\sum_k \hat{X}_k = X;$ • When $\kappa \to 0$: Wiener filtering $\frac{V_k^2}{\sum_i V_i^2} X!$

Von Mises mixture model

 $X \in \mathbb{C}^{F \times T}$: Short-Term Fourier Transform of a mixture of K sources:

 $X = \sum_{k} Z_k = \sum_{k} V_k e^{i\phi_k}.$

 V_k is deterministic (assumed known or estimated beforehand).

Von Mises (VM) phase

 $\phi_k \sim \mathcal{VM}(\ \mu_k \ , \ \kappa_k)$ 1.2 Location Concentration $\mathsf{p}(\phi|\mu,\kappa)^{8.0}$ + Max entropy distribution; + A tractable PDF: 0.4 $p(\phi|\mu,\kappa) = \frac{e^{\kappa\cos(\phi-\mu)}}{2\pi I_0(\kappa)}.$

Phase unwrapping prior

 \rightarrow Optimal combination of **prior** and **mixture phases**.

Source separation procedure

1 Phase from previous estimate: $\mu_k(f,t) = \angle \hat{X}_k(f,t-1) + 2\pi S \nu_k(f,t);$ 2 MMSE estimator given by (1); 3 Proceed to next frame.

Experimental results

• 100 songs from the Demixing Secrets Database, K = 4 sources; • Separation quality measured with the SDR/SIR/SAR (in dB).

Influence of the concentration parameter

• Constant concentration:

 $\kappa_k(f,t) = \kappa;$

• Optimal κ tuned on the

Each source is modeled as a \sum of sinusoids [1]:

- Frequency peaks are estimated with QIFFT;
- Each channel f is assigned to one sine frequency $\nu_k(f,t)$;

• Phase unwrapping:

 $\mu_k(f,t) = \mu_k(f,t-1) + 2\pi S \nu_k(f,t).$

Main drawback

A non-tractable likelihood \rightarrow costly numerical methods (MCMC).

 \rightarrow Approximate the VM model by a Gaussian model which keeps the phase dependencies.

Anisotropic Gaussian model

Anisotropic Gaussian (AG) sources:

$$X_k \sim \mathcal{N}(\underbrace{m_k}_{\text{Mean}}, \underbrace{\gamma_k}_{\text{Variance}}, \underbrace{c_k}_{\text{Relation}}), \Gamma_k = \begin{pmatrix} \gamma_k & c_k \\ \overline{c}_k & \gamma_k \end{pmatrix}.$$

Key idea: the moments are the same ones in VM and AG models.

learning database (50 songs); • For a range of κ : better results than with Wiener.

Source separation

• Test database (50 songs).

• Methods: Wiener, Consistent Wiener [2] or proposed (MMSE).

	Oracle magnitudes			Approx. magnitudes		
	SDR	SIR	SAR	SDR	SIR	SAR
Wiener	9.1	16.4	10.4	7.9	14.5	9.3
Consistent Wiener	11.1	19.7	12.0	8.8	16.3	10.1
\mathbf{MMSE}	9.8	18.1	10.8	8.0	15.1	9.3

+ Better results than with Wiener;

– Slightly worse results than with Consistent Wiener in terms of SDR/SIR/SAR but not in simple listening tests; + Significantly faster than Consistent Wiener ($\approx \times 7$).

Mixture: $X = \sum_{k} X_k \sim \mathcal{N}(m_X, \gamma_X, c_X)$ with

$$(m_X, \gamma_X, c_X, \Gamma_X) = \sum_k (m_k, \gamma_k, c_k, \Gamma_k).$$

Conclusion

Model-based prior phase information \rightarrow efficient source separation procedure.

Future research

- Refinement of onset phase estimation;
- Modeling the uncertainty about the magnitude estimates; • Joint estimation of magnitudes and phases: novel Complex NMF. References
- P. Magron, R. Badeau and B. David, "Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration", EUSIPCO 2015. J. Le Roux and E. Vincent, "Consistent Wiener filtering for audio source sepa-[2]ration", IEEE SPL 2013.