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Summary: Diarization with speaker embeddings

� Goal: Extract compact features that characterize speakers.

� Method: Learn a set of high-level feature representations through
deep learning.

� Application: Speaker embedding is applied to Single and Cross-show
Speaker Diarization.

� Results: The new representation brings an improvement over i-vectors

. Single-show condition: Shallow hidden layers give best results (0.19 points)

. Cross-show condition: Deeper hidden layers yield better performance (0.82
points)

� Conclusion: Deep representations model higher level features which
help generalizing to different acoustic conditions.
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� Task: The goal of speaker diarization is to annotate temporal regions
of audio recordings with speaker labels, in order to answer the question
“who spoke and when”.

� Single-show condition: Each show in the collection is processed
independently.

� Cross-show condition: The same speaker in multiple shows has to
be labeled with the same identity.

� Steps:

. Speech/non-speech segmentation: HMM

. Segmentation: Gaussian Likelihood Ratio (GLR)

. Local Clustering: ILP Clustering (process individually each show in the collection)

. Global Clustering: ILP Clustering (process globally the collection, only for
cross-show condition)
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Speaker Embeddings

� Problem: i-vector/PLDA pipeline not efficient on short segments

. i-vector extracted on total variability space

. PLDA has difficulty to disentangle useful information from background noise

� Goal: Extract new features on the speaker space.

� Method: Train a DNN to perform the speaker identification task

. Input: First-order Baulm-Welch statistics (61,440 dimension)

. Output: Speaker identification (1,014 dimension)

. Speaker embeddings: extract one of the hidden layers as the new feature
representation

� Observation: Although learned through the identification task,
speaker embeddings are shown to be effective for speaker verification

Experiments

� Speaker diarization: based on the LIUM Speaker diarization toolkit

� Corpus:

. Train: 300h of French broadcast news (ESTER, ETAPE, EPAC, REPERE)

. Dev/Test: REPERE 2013 French evaluation campaign (3h/10h)

� Speaker embeddings: (all params tuned on dev)

. DNN: 3 hidden layers

. Function activation: ReLU

. Speaker embedding layer: 500 dimension

. Other hidden layers: 1024 dimension

� i-vectors: dimension 150, from 1024 UBM

� Normalization: Whitening followed by Length-normalization

� PLDA:

. On i-vectors: 25 dimensions

. On Speaker-embeddings: 200 dimensions

� Metric: Diarization Error Rate (DER)

DER =
#Spk + #Miss + #FA

#Total
(1)

Experiments

� Single-show condition

Results obtained on single-show speaker diarization. We observe that
shallow hidden layers give best performance:
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Results in DER obtained by using the representation extracted from the different
hidden layers in single-show diarization.

� Cross-show condition

Results obtained on cross-show speaker diarization. We observe that
deeper hidden layers yield better performance:

16.28%'
16.50%'

17.42%'

16#

16,5#

17#

17,5#

18#

18,5#

19#

19,5#

20#

0# 25# 50# 75# 100# 125# 150# 175# 200# 225# 250#

DE
R'
(%

)'

Factor'

Embedding>1' Embedding>2' Embedding>3' i>vector'

Results in DER obtained by using the representation extracted from the different
hidden layers in cross-show diarization.

Conclusion

� Deep representations model higher level features which help
generalizing to different acoustic conditions.

� We plan to explore different input spaces for training representations.

� We plan to test embeddings on different tasks.

http://www.lif.univ-mrs.fr 2016 IEEE ICASSP - Shanghai, China


