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1. Overview & Proposed system 2. Motivation
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learning approach is achieved but without the need for 1; l A previous study of meetings in the AMI corpus has shown that abrupt 0 5 4 6 8 10 12
labelled training data and handles overlapping talkers. Segmentation variations in voice pitch estimates are indicative of speaker changes. Time [s]

Kalman Filter For DOA & F, Tracking 4. Multiple Hypnosis Tracking 5. Results & Conclusion
All the harmonics of voiced speech are tracked along with the DOA estimates so that A MHT framework is exploited to simultaneously track both the F, and DOA features. Illustrative (AMI) example
overlapping speech can be processed. Tracking observations Part of a meeting from the AMI corpus that contains overlapping speech.
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T Proposed method tracking DOA and F, tracked alone. Proposed method tracking DOA and F, simultaneously.
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0 0 0 1 Evaluation on AMI corpus
— diag(c2, -, 02). Maximum weighted clique (MWC) 0,071 Performance comparison of the Method | Hit | Miss | Multi-Hit | FA
o . R, is the covariance of the observation noise. Used to find the most likely set of tracks which 011 0,0,0 proposed methOd on the AMI COrpus Proposed 81.2% | 18.8% 36.0% 65.3%
Prediction step: do not conflict. 010 17 compared against the ‘performance F,only |822%|17.8% | 523% |72.0%
Fo =% Papa =Py +Q i . 0% 0 00 achieved by only using DOA or  F'poaonly [ 765% [ 23.6% | 50.4% |75.6%
ypothesis and each edge o ’ FO features alone as well as a
Q, is the covariance of the process noise. ‘ . BLSTM 671% | 32.9% 49.4% 43.7%
t connects 2 tracks which do not conflict. Ascore 0,%,1 21,0 bidirectional long short term memory
Update step: IS assigned which Is calculated by taI<ing the _,0,0 _,0,1 networks (BLSTN\) approach [2] Mean values across 12 meetings from the AMI corpus.
average value of all previous estimation errors. 07

[2] H. Bredin et al, “pyannote.audio: neural building blocks for speaker diarization,” in IEEE Int. Conf. on Acoust.,, Speech, and
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Track generation

Optimal Kalman gain: At each time-frame three possible tracks can be generated: a track only containing Conclusion
ki = P, HI.S:', where S, H, Py, HI + R, Fhe Fo ob§ervation; a track only containing t‘he DOA observation and a track that fuses a Anovel method has been proposed that uses a MHT framework to track the FO and
information from the F, and DOA observations. DOA of multiple speakers simultaneously.
Estimation error: e e _H & The prediction step is executed for every time-frame. However, the update step is m MHT of both the DOA and FO can lead to an improved speaker segmentation
Bt b LA only performed when new observations emerge. performance on the AMI corpus over tracking just one of these features alone.
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