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Introduction
• Few-shot learning aims to recognize unseen images of new 

classes with only a few training examples.
• Most metric-based works rely on the measurement based on 

global feature representation of images, which is sensitive to 
background factors due to the scarcity of training data.

• Existing methods based on local features use the information 
of all local features contain no matter semantical parts or 
background factors.

Problem setting up
• In FSL, we are given a base class set and a novel class set. 

Each class in base class set has sufficient labeled images, 
while only a few labeled samples are obtained for each class 
in the novel class set.  we adopt the episode-based training 
scheme to facilitate few-shot learning. In each episode, each 
classification task is performed on a support set 𝒮 and a 
query set 𝒬. 

• In particular, 𝒮 follows a 𝑁-way 𝐾-shot setting. 𝑁 is the 
number of classes and 𝐾 is the number of labeled examples 
in each class. Note that 𝐾 is a small integer, such as 1 or 5. 

• In training episodes, we optimize our model with 𝒮/𝒬
sampled from base class set. During the testing episodes, we 
measure the generalization performance of a model with 𝒮/𝒬
sampled from novel class set, where labels in 𝒮 are known 
and those in 𝒬 are unknown. 

Our Method
• We propose a “task-specific guided” strategy to mine local 

features that are task-specific and representative.
• We develop a Prototype Selection Module (PSM) to mine 

representative local features for labeled images by a loss 
guided mechanism through a simple image classification task

• We develop a Task Adaption Module (TAM) to adapt a 
binary classifier for unlabeled images based on 
representative local features from PSM.

Results
• Validation of the effectiveness of PSM and TAM

Table 1. Validation of the effectiveness of our proposed PSM and
TAM. The result is the 5-way 5-shot mean accuracy (%) with a 95%
confidence interval on the CUB (top) and miniImageNet (bottom)
dataset.

Method Backbone Used Modules 5-way 5-shot

Baseline Conv-64 - 80.83 ± 0.60
Baseline+PSM Conv-64 + PSM 82.94 ± 0.56
Baseline+PSM+TAM Conv-64 + PSM,TAM 84.53 ± 0.65
Baseline ResNet-18 - 78.92 ± 0.66
Baseline+PSM ResNet-18 + PSM 80.13 ± 0.72
Baseline+PSM+TAM ResNet-18 + PSM,TAM 81.21 ± 0.55

Table 2. Time consuming comparison with MAML and ProtoNet on
5-way 5-shot setting.

Method Backbone training phase test phase

ProtoNet Conv-64 0.394s/iteration 0.264s/iteration
MAML Conv-64 0.511s/iteration 0.301s/iteration
Our method Conv-64 0.473s/iteration 0.281s/iteration

4.2. Training Details

We evaluate our method on 5-way 1-shot and 5-way 5-shot settings.
Following the standard training strategy, we train 60,000 episodes
in total for miniImageNet and 40,000 episodes for CUB. During the
test phase, 600 test episodes are generated. We report the average
accuracy as well as the corresponding 95% confidence interval over
these 600 episodes. We consider Conv-64 [8], ResNet-18 [4] as our
CNN-based embedding models for a fair comparison. The remaining
parameters were selected based on the validation set.

4.3. Ablation Study

To better demonstrate the effectiveness of the proposed PSM and
TAM, we develop a baseline for our method. Specifically, the proto-
type of each class is the average value of local features of all labeled
images. During inference, we do not select representative local fea-
tures for query examples but use all local features.

We first conduct experiments on CUB and miniImageNet with
the backbone of Conv-64 and ResNet-18 respectively, with constantly
adding PSM and TAM to the baseline method to see the effect of these
two modules. As shown in Table 1, by comparing with our baseline,
adding the PSM can obtain a 2.11% gain on CUB and 1.21% gain
on miniImageNet. Adding the TAM, then the whole model is guided
by our “task-specific guided” strategy, which can further improve the
performance from 82.94% to 84.53% on CUB and 80.13% to 81.21%
on miniImageNet. It indicates that unrelated background factors have
side effects on performance, and our method can effectively reduce
this interference by mining representative local features.

We further evaluate the computational complexity of our model
by comparing it with two classical methods by testing the time con-
sumption in each episode. From Table 2, Our method is efficient than
MAML [20] which also needs “sub-training” as it requires second
derivative to update model parameters, while achieves competitive
time efficiency compared to ProtoNet [9]. Our method is developed
based on ProtoNet. It is just mainly two more classifiers (each is
a fully connected layer) than ProtoNet. One is trained to get the
scaling factor ⇢ for each local feature in PSM, the other one in TAM
is trained as a binary classifier to distinguish representative local
features for query images. As both classifiers only need to train 5
epochs, therefore, our method is efficient both from theory and result.

Table 3. The mean accuracies (%) with a 95% confidence interval on
the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net [8] Conv-64 61.16 ± 0.89 72.86 ± 0.70
Prototypical Net [9] Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet [10] Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ [19] Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [13] Conv-64 69.33 ± 0.22 81.56 ± 0.15
DN4 [12] Conv-64 53.15 ± 0.84 81.90 ± 0.60
Ours Conv-64 70.13 ± 0.62 84.53 ± 0.65

Table 4. The mean accuracies (%) with a 95% confidence interval
on the miniImageNet dataset. * means the confidence interval is not
reported by the original work.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Meta-SGD [21] Conv-64 50.47 ± 1.87 64.03 ± 0.94
Reptile [22] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [23] WRN-28 [24] 61.76 ± 0.08 77.59 ± 0.12
Matching Net [8] Conv-64 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [9] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [10] Conv-64 50.44 ± 0.82 65.32 ± 0.70
GNN [11] Conv-64 50.33 ± 0.36 66.41 ± 0.63
Baseline++ [19] Conv-64 48.24 ± 0.75 66.49 ± 0.63
SAML [13] Conv-64 52.22 ± * 66.34 ± *
DN4 [12] Conv-64 51.24 ± 0.74 71.02 ± 0.64
STANet-S [14] Conv-64 53.11 ± 0.60 67.16 ± 0.66
CMT [15] ResNet-18 62.05 ± 0.55 78.63 ± 0.06
FEAT [25] Conv-64 55.15 ± * 71.61 ± *
Ours Conv-64 53.98 ± 0.72 72.13 ± 0.63
Ours ResNet-18 62.79 ± 0.67 81.21 ± 0.55

4.4. Comparison with State-of-the-art

We focus more on metric-based methods as our approach belongs to
this kind. Based on comparison results on CUB and miniImageNet,
which are shown in Table 3 and Table 4 respectively. Our method
can achieve better or competitive performance compared to previous
approaches. Especially DN4, SAML, STANet-S, and CMT, which
also use local features, our method outperforms them by a sizable
margin. Moreover, our method can achieve competitive accuracy
to the recent FEAT with fewer parameters, as FEAT applies a more
complicated Transformer [26] on the top of its backbone.

4.5. Conclusion

In this paper, we propose a simple and effective metric learning
method based on local features to solve the few-shot learning problem.
We propose a “task-specific guided” strategy to find local features
that task-specific and discriminative according to the characteristics
of each task. PSM and TAM are developed for support and query set
respectively to support our strategy. Extensive experiments on the
CUB, miniImageNet datasets verify the effectiveness of our method.
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• The mean accuracies (%) with a 95% confidence 
interval on the miniImageNet dataset

Table 1. Validation of the effectiveness of our proposed PSM and
TAM. The result is the 5-way 5-shot mean accuracy (%) with a 95%
confidence interval on the CUB (top) and miniImageNet (bottom)
dataset.

Method Backbone Used Modules 5-way 5-shot

Baseline Conv-64 - 80.83 ± 0.60
Baseline+PSM Conv-64 + PSM 82.94 ± 0.56
Baseline+PSM+TAM Conv-64 + PSM,TAM 84.53 ± 0.65
Baseline ResNet-18 - 78.92 ± 0.66
Baseline+PSM ResNet-18 + PSM 80.13 ± 0.72
Baseline+PSM+TAM ResNet-18 + PSM,TAM 81.21 ± 0.55

Table 2. Time consuming comparison with MAML and ProtoNet on
5-way 5-shot setting.

Method Backbone training phase test phase

ProtoNet Conv-64 0.394s/iteration 0.264s/iteration
MAML Conv-64 0.511s/iteration 0.301s/iteration
Our method Conv-64 0.473s/iteration 0.281s/iteration

4.2. Training Details

We evaluate our method on 5-way 1-shot and 5-way 5-shot settings.
Following the standard training strategy, we train 60,000 episodes
in total for miniImageNet and 40,000 episodes for CUB. During the
test phase, 600 test episodes are generated. We report the average
accuracy as well as the corresponding 95% confidence interval over
these 600 episodes. We consider Conv-64 [8], ResNet-18 [4] as our
CNN-based embedding models for a fair comparison. The remaining
parameters were selected based on the validation set.

4.3. Ablation Study

To better demonstrate the effectiveness of the proposed PSM and
TAM, we develop a baseline for our method. Specifically, the proto-
type of each class is the average value of local features of all labeled
images. During inference, we do not select representative local fea-
tures for query examples but use all local features.

We first conduct experiments on CUB and miniImageNet with
the backbone of Conv-64 and ResNet-18 respectively, with constantly
adding PSM and TAM to the baseline method to see the effect of these
two modules. As shown in Table 1, by comparing with our baseline,
adding the PSM can obtain a 2.11% gain on CUB and 1.21% gain
on miniImageNet. Adding the TAM, then the whole model is guided
by our “task-specific guided” strategy, which can further improve the
performance from 82.94% to 84.53% on CUB and 80.13% to 81.21%
on miniImageNet. It indicates that unrelated background factors have
side effects on performance, and our method can effectively reduce
this interference by mining representative local features.

We further evaluate the computational complexity of our model
by comparing it with two classical methods by testing the time con-
sumption in each episode. From Table 2, Our method is efficient than
MAML [20] which also needs “sub-training” as it requires second
derivative to update model parameters, while achieves competitive
time efficiency compared to ProtoNet [9]. Our method is developed
based on ProtoNet. It is just mainly two more classifiers (each is
a fully connected layer) than ProtoNet. One is trained to get the
scaling factor ⇢ for each local feature in PSM, the other one in TAM
is trained as a binary classifier to distinguish representative local
features for query images. As both classifiers only need to train 5
epochs, therefore, our method is efficient both from theory and result.

Table 3. The mean accuracies (%) with a 95% confidence interval on
the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net [8] Conv-64 61.16 ± 0.89 72.86 ± 0.70
Prototypical Net [9] Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet [10] Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ [19] Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [13] Conv-64 69.33 ± 0.22 81.56 ± 0.15
DN4 [12] Conv-64 53.15 ± 0.84 81.90 ± 0.60
Ours Conv-64 70.13 ± 0.62 84.53 ± 0.65

Table 4. The mean accuracies (%) with a 95% confidence interval
on the miniImageNet dataset. * means the confidence interval is not
reported by the original work.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Meta-SGD [21] Conv-64 50.47 ± 1.87 64.03 ± 0.94
Reptile [22] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [23] WRN-28 [24] 61.76 ± 0.08 77.59 ± 0.12
Matching Net [8] Conv-64 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [9] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [10] Conv-64 50.44 ± 0.82 65.32 ± 0.70
GNN [11] Conv-64 50.33 ± 0.36 66.41 ± 0.63
Baseline++ [19] Conv-64 48.24 ± 0.75 66.49 ± 0.63
SAML [13] Conv-64 52.22 ± * 66.34 ± *
DN4 [12] Conv-64 51.24 ± 0.74 71.02 ± 0.64
STANet-S [14] Conv-64 53.11 ± 0.60 67.16 ± 0.66
CMT [15] ResNet-18 62.05 ± 0.55 78.63 ± 0.06
FEAT [25] Conv-64 55.15 ± * 71.61 ± *
Ours Conv-64 53.98 ± 0.72 72.13 ± 0.63
Ours ResNet-18 62.79 ± 0.67 81.21 ± 0.55

4.4. Comparison with State-of-the-art

We focus more on metric-based methods as our approach belongs to
this kind. Based on comparison results on CUB and miniImageNet,
which are shown in Table 3 and Table 4 respectively. Our method
can achieve better or competitive performance compared to previous
approaches. Especially DN4, SAML, STANet-S, and CMT, which
also use local features, our method outperforms them by a sizable
margin. Moreover, our method can achieve competitive accuracy
to the recent FEAT with fewer parameters, as FEAT applies a more
complicated Transformer [26] on the top of its backbone.

4.5. Conclusion

In this paper, we propose a simple and effective metric learning
method based on local features to solve the few-shot learning problem.
We propose a “task-specific guided” strategy to find local features
that task-specific and discriminative according to the characteristics
of each task. PSM and TAM are developed for support and query set
respectively to support our strategy. Extensive experiments on the
CUB, miniImageNet datasets verify the effectiveness of our method.
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Table 1. Validation of the effectiveness of our proposed PSM and
TAM. The result is the 5-way 5-shot mean accuracy (%) with a 95%
confidence interval on the CUB (top) and miniImageNet (bottom)
dataset.

Method Backbone Used Modules 5-way 5-shot

Baseline Conv-64 - 80.83 ± 0.60
Baseline+PSM Conv-64 + PSM 82.94 ± 0.56
Baseline+PSM+TAM Conv-64 + PSM,TAM 84.53 ± 0.65
Baseline ResNet-18 - 78.92 ± 0.66
Baseline+PSM ResNet-18 + PSM 80.13 ± 0.72
Baseline+PSM+TAM ResNet-18 + PSM,TAM 81.21 ± 0.55

Table 2. Time consuming comparison with MAML and ProtoNet on
5-way 5-shot setting.

Method Backbone training phase test phase

ProtoNet Conv-64 0.394s/iteration 0.264s/iteration
MAML Conv-64 0.511s/iteration 0.301s/iteration
Our method Conv-64 0.473s/iteration 0.281s/iteration

4.2. Training Details

We evaluate our method on 5-way 1-shot and 5-way 5-shot settings.
Following the standard training strategy, we train 60,000 episodes
in total for miniImageNet and 40,000 episodes for CUB. During the
test phase, 600 test episodes are generated. We report the average
accuracy as well as the corresponding 95% confidence interval over
these 600 episodes. We consider Conv-64 [8], ResNet-18 [4] as our
CNN-based embedding models for a fair comparison. The remaining
parameters were selected based on the validation set.

4.3. Ablation Study

To better demonstrate the effectiveness of the proposed PSM and
TAM, we develop a baseline for our method. Specifically, the proto-
type of each class is the average value of local features of all labeled
images. During inference, we do not select representative local fea-
tures for query examples but use all local features.

We first conduct experiments on CUB and miniImageNet with
the backbone of Conv-64 and ResNet-18 respectively, with constantly
adding PSM and TAM to the baseline method to see the effect of these
two modules. As shown in Table 1, by comparing with our baseline,
adding the PSM can obtain a 2.11% gain on CUB and 1.21% gain
on miniImageNet. Adding the TAM, then the whole model is guided
by our “task-specific guided” strategy, which can further improve the
performance from 82.94% to 84.53% on CUB and 80.13% to 81.21%
on miniImageNet. It indicates that unrelated background factors have
side effects on performance, and our method can effectively reduce
this interference by mining representative local features.

We further evaluate the computational complexity of our model
by comparing it with two classical methods by testing the time con-
sumption in each episode. From Table 2, Our method is efficient than
MAML [20] which also needs “sub-training” as it requires second
derivative to update model parameters, while achieves competitive
time efficiency compared to ProtoNet [9]. Our method is developed
based on ProtoNet. It is just mainly two more classifiers (each is
a fully connected layer) than ProtoNet. One is trained to get the
scaling factor ⇢ for each local feature in PSM, the other one in TAM
is trained as a binary classifier to distinguish representative local
features for query images. As both classifiers only need to train 5
epochs, therefore, our method is efficient both from theory and result.

Table 3. The mean accuracies (%) with a 95% confidence interval on
the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net [8] Conv-64 61.16 ± 0.89 72.86 ± 0.70
Prototypical Net [9] Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet [10] Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ [19] Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [13] Conv-64 69.33 ± 0.22 81.56 ± 0.15
DN4 [12] Conv-64 53.15 ± 0.84 81.90 ± 0.60
Ours Conv-64 70.13 ± 0.62 84.53 ± 0.65

Table 4. The mean accuracies (%) with a 95% confidence interval
on the miniImageNet dataset. * means the confidence interval is not
reported by the original work.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Meta-SGD [21] Conv-64 50.47 ± 1.87 64.03 ± 0.94
Reptile [22] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [23] WRN-28 [24] 61.76 ± 0.08 77.59 ± 0.12
Matching Net [8] Conv-64 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [9] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [10] Conv-64 50.44 ± 0.82 65.32 ± 0.70
GNN [11] Conv-64 50.33 ± 0.36 66.41 ± 0.63
Baseline++ [19] Conv-64 48.24 ± 0.75 66.49 ± 0.63
SAML [13] Conv-64 52.22 ± * 66.34 ± *
DN4 [12] Conv-64 51.24 ± 0.74 71.02 ± 0.64
STANet-S [14] Conv-64 53.11 ± 0.60 67.16 ± 0.66
CMT [15] ResNet-18 62.05 ± 0.55 78.63 ± 0.06
FEAT [25] Conv-64 55.15 ± * 71.61 ± *
Ours Conv-64 53.98 ± 0.72 72.13 ± 0.63
Ours ResNet-18 62.79 ± 0.67 81.21 ± 0.55

4.4. Comparison with State-of-the-art

We focus more on metric-based methods as our approach belongs to
this kind. Based on comparison results on CUB and miniImageNet,
which are shown in Table 3 and Table 4 respectively. Our method
can achieve better or competitive performance compared to previous
approaches. Especially DN4, SAML, STANet-S, and CMT, which
also use local features, our method outperforms them by a sizable
margin. Moreover, our method can achieve competitive accuracy
to the recent FEAT with fewer parameters, as FEAT applies a more
complicated Transformer [26] on the top of its backbone.

4.5. Conclusion

In this paper, we propose a simple and effective metric learning
method based on local features to solve the few-shot learning problem.
We propose a “task-specific guided” strategy to find local features
that task-specific and discriminative according to the characteristics
of each task. PSM and TAM are developed for support and query set
respectively to support our strategy. Extensive experiments on the
CUB, miniImageNet datasets verify the effectiveness of our method.
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• The mean accuracies (%) with a 95% confidence 
interval on the CUB dataset

• Time consuming

Table 1. Validation of the effectiveness of our proposed PSM and
TAM. The result is the 5-way 5-shot mean accuracy (%) with a 95%
confidence interval on the CUB (top) and miniImageNet (bottom)
dataset.

Method Backbone Used Modules 5-way 5-shot

Baseline Conv-64 - 80.83 ± 0.60
Baseline+PSM Conv-64 + PSM 82.94 ± 0.56
Baseline+PSM+TAM Conv-64 + PSM,TAM 84.53 ± 0.65
Baseline ResNet-18 - 78.92 ± 0.66
Baseline+PSM ResNet-18 + PSM 80.13 ± 0.72
Baseline+PSM+TAM ResNet-18 + PSM,TAM 81.21 ± 0.55

Table 2. Time consuming comparison with MAML and ProtoNet on
5-way 5-shot setting.

Method Backbone training phase test phase

ProtoNet Conv-64 0.394s/iteration 0.264s/iteration
MAML Conv-64 0.511s/iteration 0.301s/iteration
Our method Conv-64 0.473s/iteration 0.281s/iteration

4.2. Training Details

We evaluate our method on 5-way 1-shot and 5-way 5-shot settings.
Following the standard training strategy, we train 60,000 episodes
in total for miniImageNet and 40,000 episodes for CUB. During the
test phase, 600 test episodes are generated. We report the average
accuracy as well as the corresponding 95% confidence interval over
these 600 episodes. We consider Conv-64 [8], ResNet-18 [4] as our
CNN-based embedding models for a fair comparison. The remaining
parameters were selected based on the validation set.

4.3. Ablation Study

To better demonstrate the effectiveness of the proposed PSM and
TAM, we develop a baseline for our method. Specifically, the proto-
type of each class is the average value of local features of all labeled
images. During inference, we do not select representative local fea-
tures for query examples but use all local features.

We first conduct experiments on CUB and miniImageNet with
the backbone of Conv-64 and ResNet-18 respectively, with constantly
adding PSM and TAM to the baseline method to see the effect of these
two modules. As shown in Table 1, by comparing with our baseline,
adding the PSM can obtain a 2.11% gain on CUB and 1.21% gain
on miniImageNet. Adding the TAM, then the whole model is guided
by our “task-specific guided” strategy, which can further improve the
performance from 82.94% to 84.53% on CUB and 80.13% to 81.21%
on miniImageNet. It indicates that unrelated background factors have
side effects on performance, and our method can effectively reduce
this interference by mining representative local features.

We further evaluate the computational complexity of our model
by comparing it with two classical methods by testing the time con-
sumption in each episode. From Table 2, Our method is efficient than
MAML [20] which also needs “sub-training” as it requires second
derivative to update model parameters, while achieves competitive
time efficiency compared to ProtoNet [9]. Our method is developed
based on ProtoNet. It is just mainly two more classifiers (each is
a fully connected layer) than ProtoNet. One is trained to get the
scaling factor ⇢ for each local feature in PSM, the other one in TAM
is trained as a binary classifier to distinguish representative local
features for query images. As both classifiers only need to train 5
epochs, therefore, our method is efficient both from theory and result.

Table 3. The mean accuracies (%) with a 95% confidence interval on
the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net [8] Conv-64 61.16 ± 0.89 72.86 ± 0.70
Prototypical Net [9] Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet [10] Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ [19] Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [13] Conv-64 69.33 ± 0.22 81.56 ± 0.15
DN4 [12] Conv-64 53.15 ± 0.84 81.90 ± 0.60
Ours Conv-64 70.13 ± 0.62 84.53 ± 0.65

Table 4. The mean accuracies (%) with a 95% confidence interval
on the miniImageNet dataset. * means the confidence interval is not
reported by the original work.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Meta-SGD [21] Conv-64 50.47 ± 1.87 64.03 ± 0.94
Reptile [22] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [23] WRN-28 [24] 61.76 ± 0.08 77.59 ± 0.12
Matching Net [8] Conv-64 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [9] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [10] Conv-64 50.44 ± 0.82 65.32 ± 0.70
GNN [11] Conv-64 50.33 ± 0.36 66.41 ± 0.63
Baseline++ [19] Conv-64 48.24 ± 0.75 66.49 ± 0.63
SAML [13] Conv-64 52.22 ± * 66.34 ± *
DN4 [12] Conv-64 51.24 ± 0.74 71.02 ± 0.64
STANet-S [14] Conv-64 53.11 ± 0.60 67.16 ± 0.66
CMT [15] ResNet-18 62.05 ± 0.55 78.63 ± 0.06
FEAT [25] Conv-64 55.15 ± * 71.61 ± *
Ours Conv-64 53.98 ± 0.72 72.13 ± 0.63
Ours ResNet-18 62.79 ± 0.67 81.21 ± 0.55

4.4. Comparison with State-of-the-art

We focus more on metric-based methods as our approach belongs to
this kind. Based on comparison results on CUB and miniImageNet,
which are shown in Table 3 and Table 4 respectively. Our method
can achieve better or competitive performance compared to previous
approaches. Especially DN4, SAML, STANet-S, and CMT, which
also use local features, our method outperforms them by a sizable
margin. Moreover, our method can achieve competitive accuracy
to the recent FEAT with fewer parameters, as FEAT applies a more
complicated Transformer [26] on the top of its backbone.

4.5. Conclusion

In this paper, we propose a simple and effective metric learning
method based on local features to solve the few-shot learning problem.
We propose a “task-specific guided” strategy to find local features
that task-specific and discriminative according to the characteristics
of each task. PSM and TAM are developed for support and query set
respectively to support our strategy. Extensive experiments on the
CUB, miniImageNet datasets verify the effectiveness of our method.
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Prototype Selection Module
• We use the loss change of image classification to distinguishes the 

importance of each local feature.
• Each local feature is multiplied by a factor 𝜌 ∈ [0, 1] to describe the 

existence weight of each local feature. 
• We define the function to evaluate the importance of a local feature 

according to the impact on the classification loss: 𝑔 𝜌 = |ℒ 𝜌 −
ℒ(0)|;

• For convenience of calculation, we apply the Taylor expansion to 
simplify the above formula:

ℒ 𝑥 = ℒ 𝜌 + ℒ ! "
#!

𝑥 − 𝜌 +⋯+ ℒ " "
%!

𝑥 − 𝜌 % + 𝑅% 𝑥 ,
the ℒ 0 is estimated as ℒ 𝜌 − 𝜌ℒ # 𝜌 + 𝑅# 0 , the final 𝑔 𝜌 can 
be rewritten as:

𝑔 𝜌 = |𝜌ℒ # 𝜌 − 𝑅# 0 | ≈ |𝜌ℒ # 𝜌 |

Task Adaption Module
• We sample representative and discarded local features from PSM.
• Take representative local features as positive samples, while discarded 

local features as negative samples to train a binary classifier.
• Use the trained binary classifier mentioned above to mine 

representative local features for query set.
• During classifier inference, given an image-level feature, it would 

output a score between 0 to 1 for each local feature.


