Representative Local Feature Mining for Few-shot Learning

Introduction

- Few-shot learning aims to recognize unseen images of new classes with only a few training examples.
- Most metric-based works rely on the measurement based on global feature representation of images, which is sensitive to background factors due to the scarcity of training data.
- Existing methods based on local features use the information of all local features contain no matter semantical parts or background factors.

Problem setting up

- In FSL, we are given a base class set and a novel class set. Each class in base class set has sufficient labeled images, while only a few labeled samples are obtained for each class in the novel class set. we adopt the episode-based training scheme to facilitate few-shot learning. In each episode, each classification task is performed on a support set S and a query set Q.
- In particular, S follows a N-way K-shot setting. N is the number of classes and *K* is the number of labeled examples in each class. Note that *K* is a small integer, such as 1 or 5.
- In training episodes, we optimize our model with S/Qsampled from base class set. During the testing episodes, we measure the generalization performance of a model with S/Qsampled from novel class set, where labels in S are known and those in Q are unknown.

Our Method

- We propose a "task-specific guided" strategy to mine local features that are task-specific and representative.
- We develop a **Prototype Selection Module (PSM)** to mine representative local features for labeled images by a loss guided mechanism through a simple image classification task
- We develop a Task Adaption Module (TAM) to adapt a binary classifier for unlabeled images based on representative local features from PSM.

Kun Yan¹, Lingbo Liu², Jun Hou³, Ping Wang¹ ¹Peking University, ²Sun Yat-Sen University, ³SenseTime Research

Prototype Selection Module

- We use the loss change of image classification to distinguishes the importance of each local feature.
- Each local feature is multiplied by a factor $\rho \in [0, 1]$ to describe the existence weight of each local feature.
- We define the function to evaluate the importance of a local feature according to the impact on the classification loss: $g(\rho) = |\mathcal{L}(\rho) - \rho|$ $\mathcal{L}(0)$;
- For convenience of calculation, we apply the Taylor expansion to simplify the above formula:

 $\mathcal{L}(x) = \mathcal{L}(\rho) + \frac{\mathcal{L}^{(1)}(\rho)}{1!}(x - \rho) + \cdots$ the $\mathcal{L}(0)$ is estimated as $\mathcal{L}(\rho) - \rho \mathcal{L}^{(1)}$ be rewritten as:

$$g(\rho) = |\rho \mathcal{L}^{(1)}(\rho) - R_1$$

Task Adaption Module

- We sample representative and discarded local features from PSM.
- Take representative local features as positive samples, while discarded local features as negative samples to train a binary classifier.
- Use the trained binary classifier mentioned above to mine representative local features for query set.
- During classifier inference, given an image-level feature, it would output a score between 0 to 1 for each local feature.

$$(+ \frac{\mathcal{L}^{(n)}(\rho)}{n!} (x - \rho)^n + R_n(x),)$$

 $(1)(\rho) + R_1(0), \text{ the final } g(\rho) \text{ can}$

 $|\rho \mathcal{L}^{(1)}(\rho)| \approx |\rho \mathcal{L}^{(1)}(\rho)|$

• Validation of the effectiveness of PSM and TAM

			5-way 5-5110t
Baseline	Conv-64	-	80.83 ± 0.60
Baseline+PSM	Conv-64	+ PSM	82.94 ± 0.56
Baseline+PSM+TAM	Conv-64	+ PSM,TAM	84.53 ± 0.65
Baseline	ResNet-18	-	$78.92 \pm 0.66 \\80.13 \pm 0.72 \\81.21 \pm 0.55$
Baseline+PSM	ResNet-18	+ PSM	
Baseline+PSM+TAM	ResNet-18	+ PSM,TAM	

Method	Backbone	training phase	test phase
ProtoNet MAML	Conv-64 Conv-64	0.394s/iteration 0.511s/iteration	0.264s/iteration 0.301s/iteration
Our method	Conv-64	0.473s/iteration	0.281s/iteration

• The mean accuracies (%) with a 95% confidence interval on the miniImageNet dataset

Method	Backbone	5-way 1-shot	5-way 5-shot
MAML [20]	Conv-64	48.70 ± 1.75	63.15 ± 0.91
Meta-SGD [21]	Conv-64	50.47 ± 1.87	64.03 ± 0.94
Reptile [22]	Conv-64	47.07 ± 0.26	62.74 ± 0.37
LEO [23]	WRN-28 [24]	61.76 ± 0.08	77.59 ± 0.12
Matching Net [8]	Conv-64	43.56 ± 0.84	55.31 ± 0.73
Prototypical Net [9]	Conv-64	49.42 ± 0.78	68.20 ± 0.66
RelationNet [10]	Conv-64	50.44 ± 0.82	65.32 ± 0.70
GNN [11]	Conv-64	50.33 ± 0.36	66.41 ± 0.63
Baseline++ [19]	Conv-64	48.24 ± 0.75	66.49 ± 0.63
SAML [13]	Conv-64	$52.22 \pm *$	$66.34 \pm *$
DN4 [12]	Conv-64	51.24 ± 0.74	71.02 ± 0.64
STANet-S [14]	Conv-64	53.11 ± 0.60	67.16 ± 0.66
CMT [15]	ResNet-18	62.05 ± 0.55	78.63 ± 0.06
FEAT [25]	Conv-64	55.15 ± *	$71.61 \pm *$
Ours	Conv-64	53.98 ± 0.72	72.13 ± 0.63
Ours	ResNet-18	$\textbf{62.79} \pm \textbf{0.67}$	$\textbf{81.21} \pm \textbf{0.55}$

MAML [20] Matching Net [8] Prototypical Net RelationNet [10] Baseline++ [19] SAML [13] DN4 [12]

Ours

Paper ID: 1633

Results

Time consuming

• The mean accuracies (%) with a 95% confidence interval on the CUB dataset

	Backbone	5-way 1-shot	5-way 5-shot
5] : [9]]	Conv-64 Conv-64 Conv-64 Conv-64 Conv-64	$55.92 \pm 0.95 \\61.16 \pm 0.89 \\51.31 \pm 0.91 \\62.45 \pm 0.98 \\60.53 \pm 0.83 \\69.33 \pm 0.22 \\52.15 \pm 0.84$	$72.09 \pm 0.76 72.86 \pm 0.70 70.77 \pm 0.69 76.11 \pm 0.69 79.34 \pm 0.61 81.56 \pm 0.15 91.00 \pm 0.60 $
	Conv-64	$\frac{55.15 \pm 0.84}{70.13 \pm 0.62}$	81.90 ± 0.00 84.53 ± 0.65