

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

Qing-Long Zhang, Yu-Bin Yang

State Key Laboratory for Novel Software Technology, Nanjing University, China Codes and pretrained models are available at https://github.com/wofmanaf/SA-Ne

Introduction

Attention Mechanism

- 1. Correctly incorporating attention mechanisms into convolution blocks can significantly improve the performance of CNNs.
- 2. There are mainly two types of attention mechanisms most commonly used in computer vision: channel attention and spatial attention.
- 3. Integrated spatial attention and channel attention into one module can achieve significant improvement.
- 4. Existing works suffered from either converging difficulty or heavy computation burdens.

Shuffle Attention

Overall Architecture

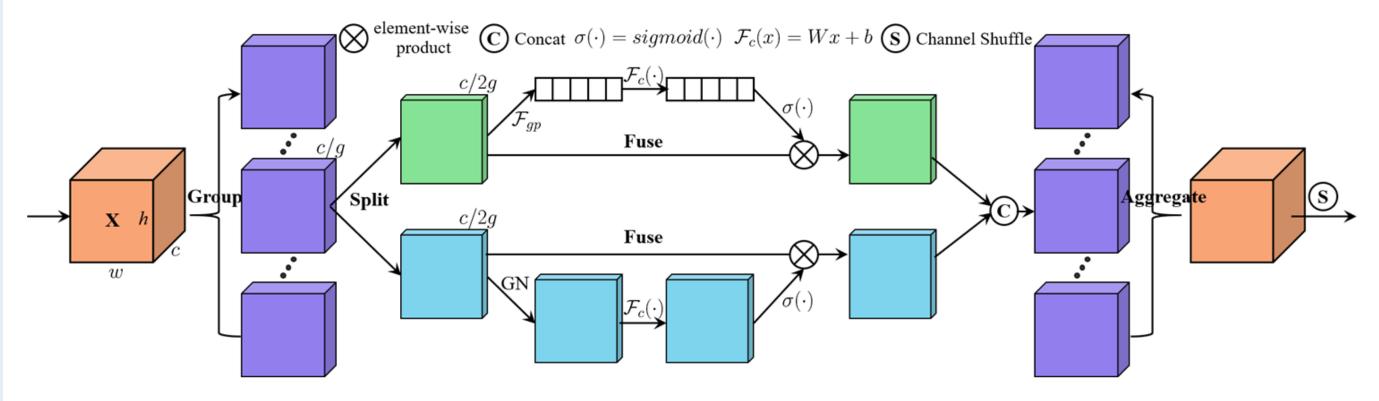


Figure 1: SA module divides the input feature map into groups, and uses Shuffle Unit to integrate the channel attention and spatial attention into one block for each group. After that, all sub-features are aggregated and a "channel shuffle" operator is utilized to enable information communication between different sub-features.

Feature Grouping

- For a given feature map $x \in \mathbb{R}^{c \times h \times w}$, SA first divides x into g groups along the channel dimension, i.e., $x = [x_1, \dots, x_g]$, in which each sub-feature x_k gradually captures a specific semantic response in the training process.
- Then, we generate the corresponding importance coefficient for each sub-feature through an attention module. Specifically, at the beginning of each attention unit, the input of x_k is split into two branches along the channels dimension.
- > one branch is adopted to produce a channel attention map by exploiting the inter-relationship of channels, while the other branch is used to generate a spatial attention map by utilizing the inter-spatial relationship of features, so that the model can focus on "what" and "where" is meaningful.

Channel Attention

Vising GAP to generate channel-wise statistics as $s \in \mathbb{R}^{c/2g \times 1 \times 1}$ by shrinking x_{k1} through spatial dimension, i.e.,

$$s = \mathcal{F}_{gp}(x_{k1}) = \frac{1}{h \times w} \sum_{i=1}^{h} \sum_{j=1}^{w} x_{k1}(i,j)$$
(1)

> Creating a compact feature to enable guidance for adaptive selection, i.e.,

$$x'_{k1} = \sigma(\mathcal{F}_c(s)) \cdot x_{k1} = \sigma(W_1 s + b_1) \cdot x_{k1}$$
(2)

Where W_1 and b_1 are parameters used to scale and shift s.

Shuffle Attention

Spatial Attention

 \triangleright Using Group Norm (GN) over x_{k2} to obtain spatial-wise statistics, i.e.,

$$\hat{x}_{k2} = GN(x_{k2}) \tag{3}$$

Adopting \mathcal{F}_c to enhance the representation of \hat{x}_{k2} . The final output of spatial attention is obtained by

$$x'_{k2} = \sigma(W_2 \hat{x}_{k2} + b_2) \cdot x_{k2} \tag{4}$$

Where W_2 and b_2 are parameters used to scale and shift \hat{x}_{k2} .

Experiments

Classification on ImageNet-1k

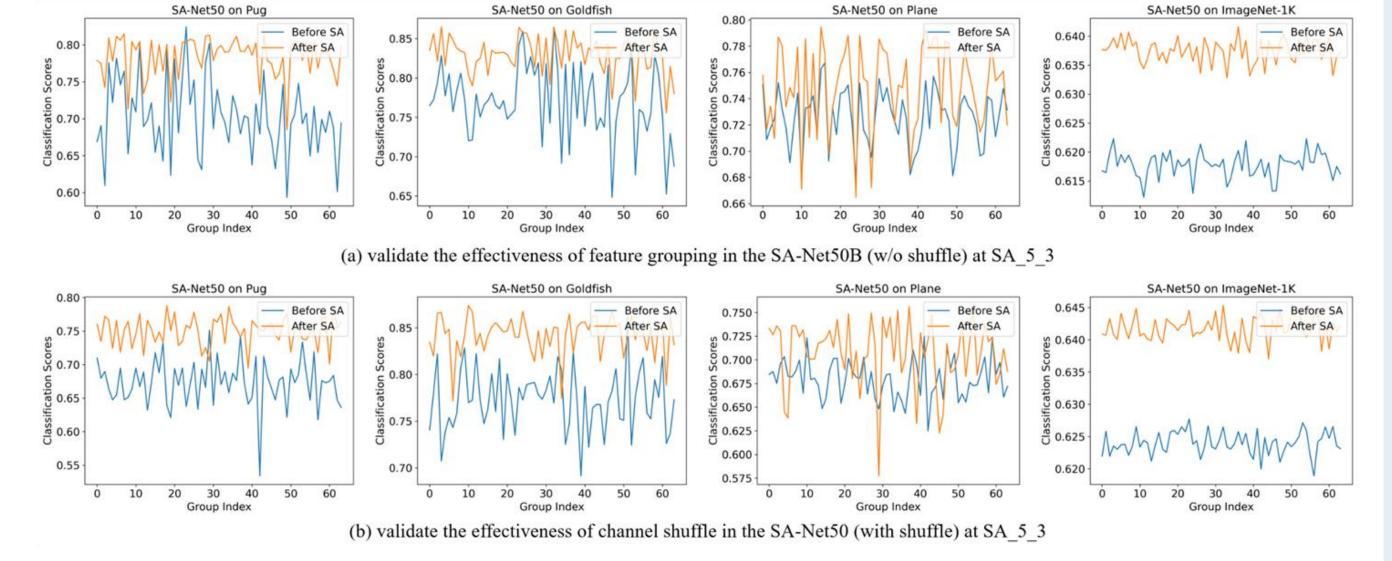


Figure 2: Validation on the effectiveness of SA.

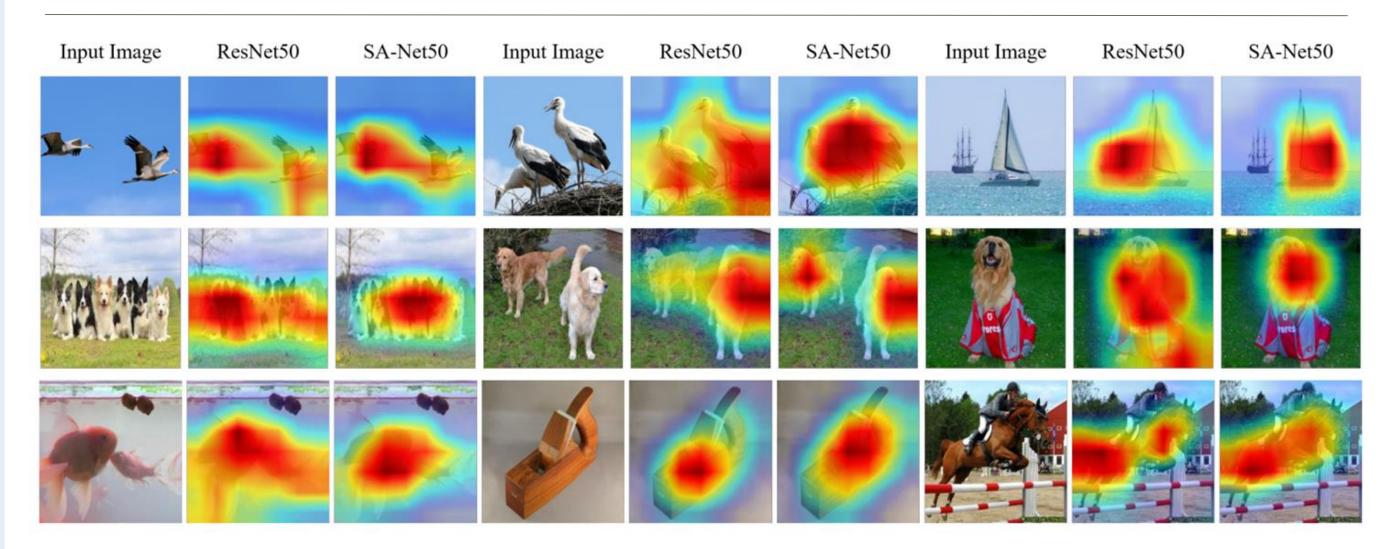


Figure 3: Sample visualization on ImageNet-1k validation split generated by GradCAM. All target layer selected is "layer4.2".

Ablation Studies

Table 1: Ablation studies of SA-Net50 on ImageNet-1k dataset with four options (i.e., eliminating Group Norm, eliminating Channel Shuffle, eliminating $\mathcal{F}_c(\cdot)$ and utilizing Conv-1x1 to replace $\mathcal{F}_c(\cdot)$.

Methods	GFLOPs	Top-1 Acc (%)	Top-5 Acc (%)
origin	4.125	77.724	93.798
w/o_gn	4.125	77.372	93.804
w/o_shu	ffle 4.125	77.598	93.758
w/o_ \mathcal{F}_c (·) 4.125	77.608	93.886
1×1 Co	onv 4.140	77.684	93.840

Experiments

Classification on ImageNet-1k

Table 2: Comparisons of different attention methods on ImageNet-1k in terms of network parameters (Param.), GFLOPs, and Top-1/Top-5 accuracy (in \%).

Attention Methods	Backbones	Param.	GFLOPs	Top-1 Acc (%)	Top-5 Acc (%)
ResNet [17]		25.557M	4.122	76.384	92.908
SENet [23]		28.088M	4.130	77.462	93.696
CBAM [10]	ResNet-50	28.090M	4.139	77.626	93.660
SGE-Net [12]	Resnet-30	25.559M	4.127	77.584	93.664
ECA-Net [11]		25.557M	4.127	77.480	93.680
SA-Net (Ours)		25.557M	4.125	77.724 († 1.34)	93.798 († 0.89)
ResNet [17]		44.549M	7.849	78.200	93.906
SENet [23]		49.327M	7.863	78.468	94.102
CBAM [10]	ResNet-101	49.330M	7.879	78.354	94.064
SGE-Net [12]		44.553M	7.858	78.798	94.368
ECA-Net [11]		44.549M	7.858	78.650	94.340
SA-Net (Ours)		44.551M	7.854	78.960 († 0.76)	94.492 († 0.59)

Object Detection on MS COCO

Table 3: Object detection results of different attention methods on COCO val2017.

Methods	Detectors	Param.	GFLOPs	AP50:95	AP50	AP75	AP_S	AP_M	$\mid AP_L$
ResNet-50 + SE + SA (Ours)	Faster R-CNN	41.53M 44.02M 41.53M	207.07 207.18 207.35	36.4 37.7 38.7 (↑ 2.3)	58.4 60.1 61.2	39.1 40.9 41.4	21.5 22.9 22.3	40.0 41.9 42.5	46.6 48.2 49.8
ResNet-101 + SE + SA (Ours)		60.52M 65.24M 60.53M	283.14 283.33 283.60	38.5 39.6 41.0 († 2.5)	60.3 62.0 62.7	41.6 43.1 44.8	22.3 23.7 24.4	43.0 44.0 45.1	49.8 51.4 52.5
ResNet-50 + SE + SA (Ours)	Mask R-CNN	44.18M 46.67M 44.18M	275.58 275.69 275.86	37.3 38.7 39.4 (↑ 2.1)	59.0 60.9 61.5	40.2 42.1 42.6	21.9 23.4 23.4	40.9 42.7 42.8	48.1 50.0 51.1
ResNet-101 + SE + SA (Ours)		63.17M 67.89M 63.17M	351.65 351.84 352.10	39.4 40.7 41.6 († 2.2)	60.9 62.5 63.0	43.3 44.3 45.5	23.0 23.9 24.9	43.7 45.2 45.5	51.4 52.8 54.2
ResNet-50 + SE + SA (Ours)	RetinaNet	37.74M 40.25M 37.74M	239.32 239.43 239.60	35.6 36.0 37.5(† 1.9)	55.5 56.7 58.5	38.3 38.3 39.7	20.0 20.5 21.3	39.6 39.7 41.2	46.8 47.7 45.9
ResNet-101 + SE + SA (Ours)		56.74M 61.49M 56.64M	315.39 315.58 315.85	37.7 38.8 40.3 (↑ 2.6)	57.5 59.3 61.2	40.4 41.7 43.2	21.1 22.1 23.2	42.2 43.2 44.4	49.5 51.5 53.5

Instance Segmentation on MS COCO.

Table 4: Instance segmentation results of various state-of-the-arts attention modules using Mask R-CNN on COCO val2017.

Methods	AP50:95	AP50	AP75	$ AP_S $	AP_M	AP
ResNet-50	34.2	55.9	36.2	18.2	37.5	46.
+ SE	35.4	57.4	37.8	17.1	38.6	51.
+ ECA	35.6	58.1	37.7	17.6	39.0	51.
+ SGE	34.9	56.9	37.0	19.1	38.4	47.
+ SA (Ours)	36.1 († 1.9)	58.7	38.2	19.4	39.4	49.
ResNet-101	35.9	57.7	38.4	19.2	39.7	49.
+ SE	36.8	59.3	39.2	17.2	40.3	53.
+ ECA	37.4	59.9	39.8	18.1	41.1	54.
+ SGE	36.9	59.3	39.4	20.0	40.8	50.
+ SA (Ours)	38.0 († 2.1)	60.0	40.3	20.8	41.2	51.

Conclusion

- ✓ We introduce SA module for deep CNNs, which groups channel dimensions into multiple sub-features, and then utilizes a Shuffle Unit to integrate the complementary channel and spatial attention module for each sub-feature.
- ✓ Extensive experimental results on ImageNet-1k and MS COCO demonstrate that the proposed SA has lower model complexity than the state-of-the-art attention approaches while achieving outstanding performance.