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Problem Formulation

MU-MISO interference downlink channel

Single base station with M transmit antennas

N single-antenna users

user j

user i

Received signal of user i

yi = hHi vixi +
N∑

j=1,j 6=i
hHi vjxj + ni

hi ∈ CM : channel, ni: noise

vi ∈ CM : beamformer vector

xi: transmitted symbol

V , [v1,v2, . . . ,vN ]T ∈ CN×M

We address the NP-hard problem

max
V

N∑
i=1

αi log2 (1 + SINRi) (1a)

s.t. Tr(V V H) ≤ P (1b)

– log2 (1 + SINRi) is the rate of user i

–αi is the priority of user i (assumed to be known)

We want to comply with the power consumption

and latency constraints at the base station

WMMSE algorithm

It works on an equivalent reformulation

min
u,w,V

f (u,w,V ) (2a)

s.t. Tr(V V H) ≤ P (2b)

f is jointly nonconvex over (u,w,V )

f is convex in each optimization variable

PSEUDOCODE

repeat

u = argminξ f (ξ,w,V )

w = argminξ f (u, ξ,V )

V = argminξ f (u,w, ξ) s.t. Tr(ξξH) ≤ P

until convergence

Guaranteed to converge to a local optimum

Relatively high computational complexity

Deep unfolding

Goal: trade off complexity and performance in

presence of computational and latency constraints

for iterative algorithms

Key idea: build and train a neural network whose

structure is determined by the iterative algorithm

It incorporates domain knowledge

WMMSE - Deep unfolding

The update equations of u and w can be easily

mapped to neural network layers

Conversely, the update of V is obtained by

min
ξ

f (u,w, ξ) (3a)

s.t. Tr(ξξH) ≤ P, (3b)

with the method of Lagrange multipliers

It leads to a matrix inversion, an eigendecom-

position, and a bisection search which consti-

tute an obstacle to deep unfolding

Unfoldable WMMSE algorithm

We propose to solve (3) with the projected gra-

dient descent (PGD) approach

We truncate the sequence of PGD steps to K

PSEUDOCODE

for l = 1, . . . , L

u = argminξ f (ξ,w,V )

w = argminξ f (u, ξ,V )

for k = 1, . . . , K

V (k) = ΠC{V (k−1) − γ∇f (V (k−1))}

ΠC{V } =

{
V , if Tr(V V H) ≤ P
V
‖V ‖

√
P , otherwise.

(4)

We prove the unfoldable WMMSE retains the

same convergence guarantees of the WMMSE

Deep unfolded WMMSE
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The step sizes of the PGD (Γ) are the trainable parameters, where Γ = (γ1,γ2, . . . ,γL)

We minimize the global objective loss function

L(Γ) = − 1

Ns

Ns∑
n=1

L∑
l=1

fWSR(Hn,V l; Γ) (5)

where Ns is the size of the training set

Numerical Results
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Deep unfolded WMMSE - same γ

WMMSE at convergence

N = M = 4, K = 4, and SNR of 10 dB
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Deep unfolded WMMSE - same γ

N = M , L = 1, K = 4, and SNR of 10 dB

We initialize V with matched filtering

We initialize γ
(k)
l = 1 for k = 1, . . . , K

and l = 1, . . . , L

We set αi = 1 for i = 1, . . . , N

h is drawn from a Rayleigh distribution

For each combination of M , L, K, and

SNR we train a different network

We adopt the Adam optimizer

’same γ’ - step sizes constrained to be

equal across all PGD steps of the same

layer: γ
(1)
l = . . . = γ

(K)
l for l = 1, . . . , L
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Deep unfolded WMMSE - same γ

N = M = 4, L = 1, and K = 4


