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Beamforming problem

» We address the weighted sum rate (WSR) maximization problem

N
il 1+ SINR; 1
max Z;oz, og, (1 + i) (1a)
=
st. Tr(VvH)y<p (1b)
— log, (1 4 SINR;) is the rate of user i
H 2
- SINR; = W (signal-to-interference-plus-noise ratio of user i)

— «; is the priority of user i (assumed to be known)

» Problem (1) is known to be NP-hard?

!Luo et al., "Dynamic spectrum management: Complexity and duality,” IEEE Journal of Selected
Topics in Signal Processing, 2008.
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WMMSE algorithm

» The weighted minimum mean square error (WMMSE) algorithm? finds a local
optimum by working on an equivalent reformulation of the WSR problem, i.e.,

min  f(u,w, V) (2a)
u,w,V
st. Tr(VvH)<p (2b)

» At each iteration of the WMMSE:

— the update of u is the optimal solution of ming (&, w, V)
— the update of w is the optimal solution of ming f(u, &, V)
— the update of V is the optimal solution of ming f(u, w, £) s.t. Tr(¢¢") < P

> It is guaranteed to converge to a local optimum

> It exhibits a relatively high computational complexity

2Shi et al.,” An iteratively weighted MMSE approach to distributed sum-utility maximization for a
MIMO interfering broadcast channel,” IEEE Transaction on Signal Processing, 2011.
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P It is a learning technique applicable to iterative algorithms

» Goal: trade off complexity and performance in presence of constraints

> Key idea: build and train a neural network whose structure is determined by the
iterative algorithm

Map each iteration of the algorithm to a neural network layer

Fix the number of layers of the network according to the complexity and latency
constraints

Select the trainable parameters

— Train the network with gradient-based methods and back-propagation

» It incorporates domain knowledge in the structure of the network



Deep unfolding

Advantages with respect to standard neural network solutions

» No architecture selection
» Explainability

» Fewer parameters to train
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WMMSE algorithm - Deep unfolding

» The WMMSE algorithm involves operations that are hard to map to neural
network layers as acknowledged by Sun et al.’

WMMSE steps Unfolded steps

uj = argming f(§, wj_1, Vj 1) up=Qw;_1,V; 1)
Wj = argming f(Uj,E, Vj_l) WJ' = \U(Uj, Vj_l)
V; = argming f(uj, w;, §) s:t. Tr(eef) < P ?

J is the iteration index

3Sun et al., " Learning to Optimize: Training Deep Neural Networks for Interference Management,”
IEEE Transactions on Signal Processing, 2018
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» The update equation of V is obtained by solving
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st. Tr(eg") < P, (3b)

with the method of Lagrange multipliers

> [t leads to a matrix inversion, an eigendecomposition, and a bisection search
> We observe that

— The cost function is convex
— The constraint set is convex

» We propose to solve (3) with the projected gradient descent (PGD) approach
» We truncate the sequence of PGD steps to K
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> At each iteration:

— the update of u is the optimal solution of ming f(§, w, V)
— the update of w is the optimal solution of ming f(u, &, V)
— the update of V is given by K PGD steps

Convergence

We can prove that the unfoldable WMMSE algorithm retains
the same convergence guarantees of the original WMMSE
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>

K)
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input layer / first iteration : second layer / second iteration : : output layer / last iteration
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» We select the step sizes of the PGD (I') to be the trainable parameters

> We minimize the following loss function

N L

1 S

L(r) = N E fwsr(Hn, Vi T)
=1

N

where Nj is the size of the training set Weighted Sum Rate




Numerical results

- M=
-N=4

-5 =104dB
— 4 PGD steps

Sum rate [bits per channel use]

—@— Deep unfolded WMMSE
—A— WMMSE
—— Deep unfolded WMMSE - same ~
- -- WMMSE at convergence
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Conclusion

» We addressed the trade-off between complexity and performance for the
WSR maximization beamforming problem

» To this end, we provided a variant of the WMMSE algorithm that
— allows for the novel application of deep unfolding
— retains the same convergence guarantees of the original WMMSE algorithm

» Numerical results confirmed that the deep unfolded WMMSE successfully
addresses the trade-off



Thank you for your attention!

https://github.com/Ipkg/ WMMSE-deep-unfolding/tree/ICASSP2021

You can reach out to me at pellaco@kth.se



