

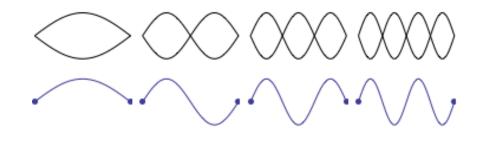
DeepFO: End-to-end Fundamental Frequency Estimation for Music and Speech Signals

Satwinder Singh, Ruili Wang*, Yuanhang Qiu

s.singh4@massey.ac.nz, ruili.wang@massey.ac.nz, y.qiu1@massey.ac.nz

School of Natural and Computational Sciences

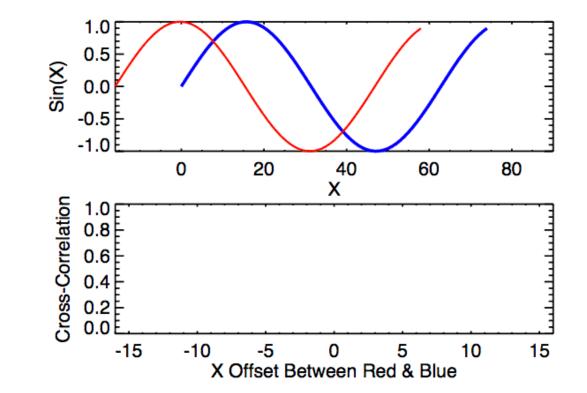
Massey University, Auckland, New Zealand


Outline

- Introduction and background
- Existing research
- Problem statement
- Proposed approach
- Experimental setup and results
- Conclusions

What is Pitch?

- Also known as Fundamental frequency (f0), is a lowest and predominant frequency in complex audio signal.
- Fundamental frequency is regarded as physical property of the signal
- Whereas Pitch is more often used to refer to how the fundamental frequency is perceived.


Why it is important?

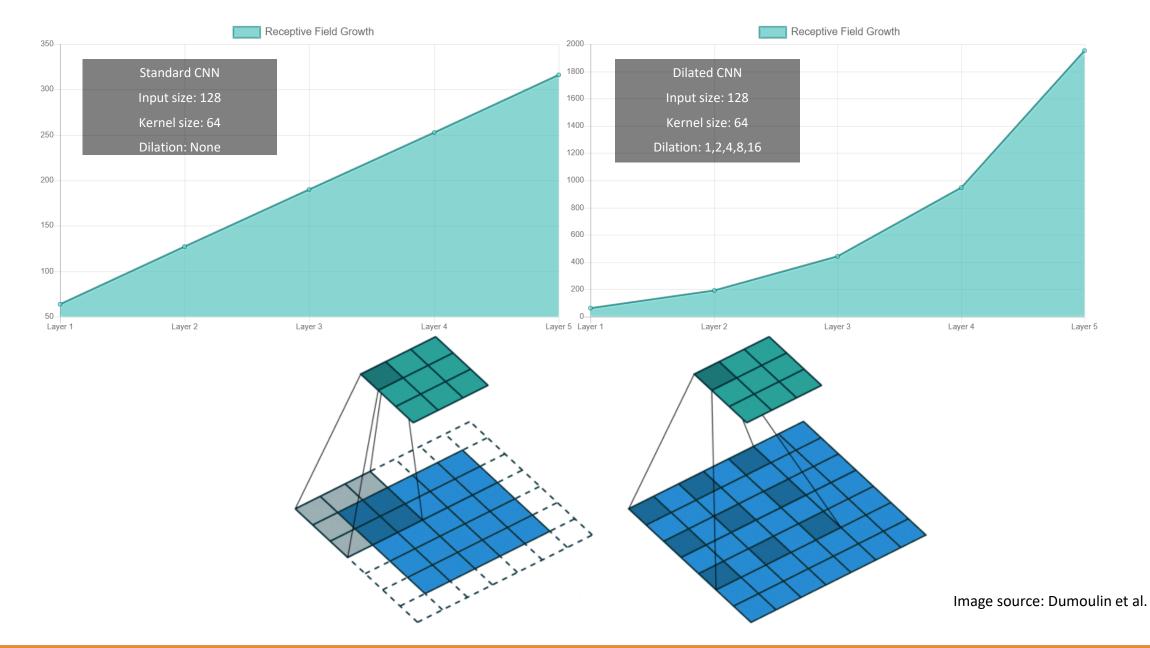
- Melody extraction
- Gender identification
- Environmental sound classification
- Speech recognition
- Speech synthesis

What has been done?

- Digital Signal Processing (DSP) based methods
 - Mostly based on autocorrelation or crosscorrelation function and their variants

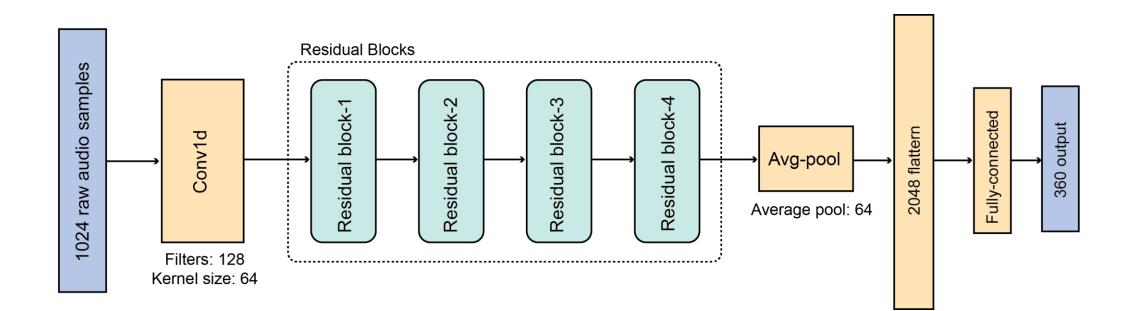
What has been done?

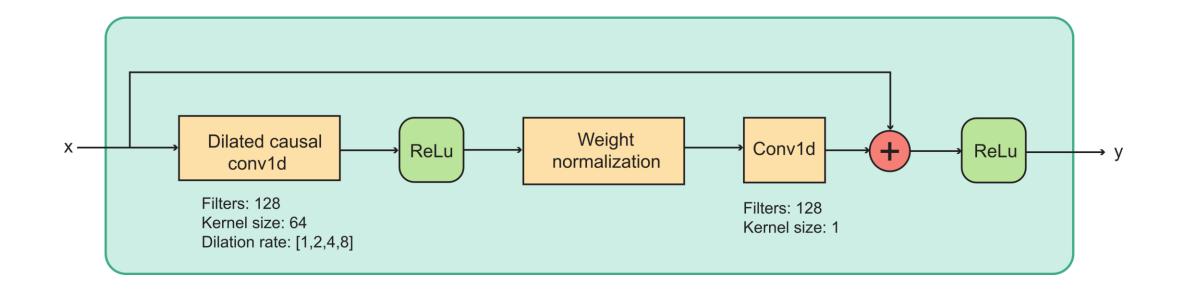
- Data-driven based methods
 - Deep leaning
 - CREPE (Convolution Representation of Pitch Estimation) [Kim et al., 2018]
 - CRN-Raw (Convolution Residual Network) [Dong et al., 2019]
 - SPICE (Self-Supervised Pitch Estimation) [Gfeller et al., 2020]



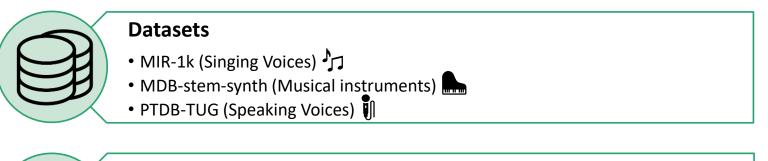
Problem Statement

• Shallow receptive fields


• Large number of network parameters



Proposed Architecture



Residual Block

Experimental Setup

Evaluation measures

- Raw Pitch Accuracy (RPA)
- Raw Chroma Accuracy (RCA)

Baselines

- Convolution Representation for Pitch Estimation (CREPE)
- Sawtooth Waveform Inspired Pitch Estimator (SWIPE)

Experimental Results (Clean audio)

Table 1: Average raw pitch accuracy and raw chroma accuracy and their standard deviation (\pm) tested on three different test datasets.

Model	Params	Metrics	Datasets			
			MIR-1k	MDB-Stem-synth	PTDB-TUG	
SWIPE	-	RPA (%)	88.73 ± 5.43	92.84 ± 9.59	87.74 ± 7.17	
		RCA (%)	89.24 ± 5.28	93.83 ± 7.69	88.93 ± 6.12	
CREPE	22.2M	RPA (%)	96.51 ± 3.23	97.22 ± 4.12	78.18 ± 10.07	
		RCA (%)	96.84 ± 2.56	97.50 ± 2.97	79.81 ± 9.39	
DeepF0	5M	RPA (%)	$\textbf{97.82} \pm \textbf{3.34}$	$\textbf{98.38} \pm \textbf{2.97}$	$\textbf{93.14} \pm \textbf{3.32}$	
		RCA (%)	$\textbf{98.28} \pm \textbf{1.94}$	$\textbf{98.44} \pm \textbf{2.87}$	$\textbf{93.47} \pm \textbf{3.41}$	

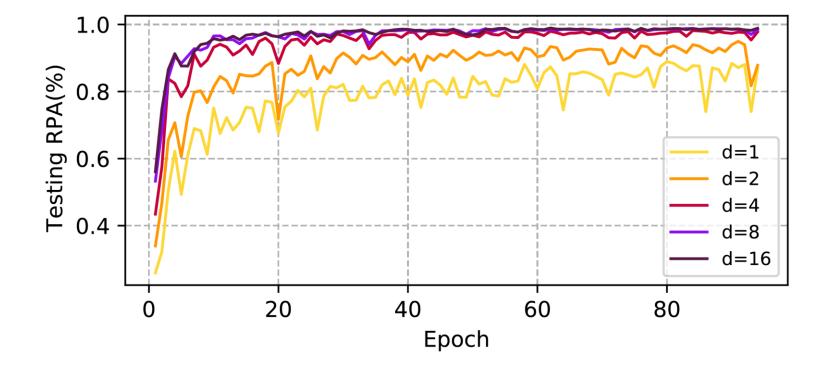
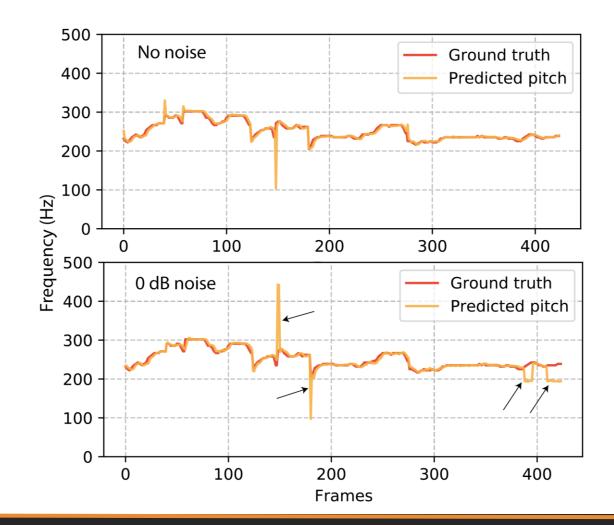

Experimental Results (Noisy audio)

Table 2: Average raw pitch accuracy and raw chroma accuracy and their standard deviation (\pm) on MIR-1k dataset with added noise on various levels of SNR.

Model	Metrics	Noise Profile					
		Clean	20dB	10 dB	0dB		
SWIPE	RPA (%)	88.73 ± 5.43	84.45 ± 5.64	59.78 ± 11.58	32.04 ± 11.84		
	RCA (%)	89.24 ± 5.28	85.31 ± 5.19	62.85 ± 11.07	37.31 ± 12.93		
CREPE	RPA (%)	96.51 ± 3.23	96.49 ± 3.32	95.11 ± 4.65	$\textbf{84.92} \pm \textbf{10.70}$		
	RCA (%)	96.84 ± 2.56	96.96 ± 2.63	96.18 ± 3.35	$\textbf{87.85} \pm \textbf{8.82}$		
DeepF0	RPA (%)	$\textbf{97.82} \pm \textbf{3.34}$	$\textbf{97.39} \pm \textbf{3.76}$	94.77 ± 6.03	79.52 ± 14.0		
	RCA (%)	$\textbf{98.28} \pm \textbf{1.94}$	$\textbf{98.09} \pm \textbf{2.10}$	$\textbf{96.35} \pm \textbf{3.72}$	84.37 ± 10.71		


Experimental Results (with different dilation rates)

Pitch Trajectories (ground truth vs. predicted pitch)

- The estimated pitch trajectories of DeepF0 in comparison with ground truth under clean (top) and 0dB noise (bottom).
- Under no noise scenario DeepF0 produces near perfect pitch estimation, while under noise there are few errors here and there.

Conclusions

- Our proposed model with 77.4% fewer parameters can still perform better than CREPE model.
- Larger receptive field is indeed very important in pitch estimation model.
- We also show that our model can capture reasonably well pitch estimation even under the various levels of accompaniment noise.

References

- Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello, "CREPE: A convolutional representation for pitch estimation," in IEEE International Conference on Acoustics, Speech and Signal Processing, 2018, pp. 161–165.
- Mingye Dong, Jie Wu, and Jian Luan, "Vocal pitch extraction in polyphonic music using convolutional residual network," in 20th Annual Conference of the International Speech Communication Association, 2019, pp. 2010–2014.
- 3. Beat Gfeller, Christian Frank, Dominik Roblek, Matt Sharifi, Marco Tagliasacchi, and Mihajlo Velimirovic, "SPICE: Selfsupervised pitch estimation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020.

Thank you!

