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What is Pitch?

• Also known as Fundamental frequency

(f0), is a lowest and predominant

frequency in complex audio signal.

• Fundamental frequency is regarded as

physical property of the signal

• Whereas Pitch is more often used to

refer to how the fundamental frequency

is perceived.
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Why it is important?

• Melody extraction

• Gender identification

• Environmental sound classification

• Speech recognition

• Speech synthesis
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What has 
been done?

• Digital Signal Processing (DSP) 

based methods

• Mostly based on auto-
correlation or cross-
correlation function and 
their variants
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What has been done?

• Data-driven based methods

• Deep leaning

• CREPE (Convolution Representation of Pitch Estimation) [Kim et al., 2018]

• CRN-Raw (Convolution Residual Network) [Dong et al., 2019]

• SPICE (Self-Supervised Pitch Estimation) [Gfeller et al., 2020]
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Problem Statement

• Shallow receptive fields

• Large number of network parameters
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8Receptive field size comparison (Standard CNN vs Dilated CNN)

Standard CNN

Input size: 128

Kernel size: 64

Dilation: None

Dilated CNN

Input size: 128

Kernel size: 64

Dilation: 1,2,4,8,16

Image source: Dumoulin et al.



Proposed Architecture
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Residual Block
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Experimental Setup

Datasets

• MIR-1k (Singing Voices)

• MDB-stem-synth (Musical instruments)

• PTDB-TUG (Speaking Voices)

Evaluation measures

• Raw Pitch Accuracy (RPA)

• Raw Chroma Accuracy (RCA)

Baselines

• Convolution Representation for Pitch Estimation (CREPE)

• Sawtooth Waveform Inspired Pitch Estimator (SWIPE)
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Experimental Results (Clean audio)
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Experimental Results (Noisy audio)
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Experimental Results (with different dilation rates)
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Pitch Trajectories 
(ground truth vs. predicted pitch)

• The estimated pitch trajectories of

DeepF0 in comparison with ground

truth under clean (top) and 0dB

noise (bottom).

• Under no noise scenario DeepF0

produces near perfect pitch

estimation, while under noise there

are few errors here and there.

15



Conclusions

• Our proposed model with 77.4% fewer parameters can still perform better than

CREPE model.

• Larger receptive field is indeed very important in pitch estimation model.

• We also show that our model can capture reasonably well pitch estimation even

under the various levels of accompaniment noise.
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Thank you!
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Questions?


