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What is Pitch?

Also known as Fundamental frequency
(f0), is a lowest and predominant
frequency in complex audio signal.

Fundamental frequency is regarded as
physical property of the signal

Whereas Pitch is more often used to
refer to how the fundamental frequency
is perceived.
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Why it is important?

Melody extraction

Gender identification
Environmental sound classification
Speech recognition

Speech synthesis
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What has
been done?

* Digital Signal Processing (DSP)
based methods

* Mostly based on auto-
correlation or cross-
correlation function and
their variants
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What has been done?

Data-driven based methods

* Deep leaning
* CREPE (Convolution Representation of Pitch Estimation) [Kim et al., 2018]
* CRN-Raw (Convolution Residual Network) [Dong et al., 2019]
* SPICE (Self-Supervised Pitch Estimation) [Gfeller et al., 2020]
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Problem Statement

Shallow receptive fields

Large number of network parameters
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Proposed Architecture
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Experimental Setup

Datasets

* MIR-1k (Singing Voices) )ﬂ
* MDB-stem-synth (Musical ins'gruments) h
* PTDB-TUG (Speaking Voices)

S
—

Evaluation measures

* Raw Pitch Accuracy (RPA)
* Raw Chroma Accuracy (RCA)

Baselines

* Convolution Representation for Pitch Estimation (CREPE)
» Sawtooth Waveform Inspired Pitch Estimator (SWIPE)
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Experimental Results (cieanaudio)

Table 1: Average raw pitch accuracy and raw chroma accuracy and
their standard deviation (%) tested on three different test datasets.

Model |Params| Metrics Datasets
MIR-1k |MDB-Stem-synth| PTDB-TUG
SWIPE| - RPA (%) |88.73 +5.43| 92.84 +9.59 | 87.74 +7.17
RCA (%)[89.24 +£5.28 | 93.83 +7.69 | 88.93 +6.12
CREPE| 22 2M RPA (%) |96.51 +£3.23| 97.22 +4.12 |78.18 +10.07
RCA (%)[96.84 £2.56| 97.50 +2.97 | 79.81 4+9.39
DeepF0| 5M RPA (%) |97.82 +3.34| 98.38 +2.97 |93.14 + 3.32
RCA (%)[98.28 + 1.94| 98.44 + 2.87 |93.47 + 3.41




Experimental Results (oisy audio)

Table 2: Average raw pitch accuracy and raw chroma accuracy and
their standard deviation (4+) on MIR-1k dataset with added noise on
various levels of SNR.

Model

Metrics

Noise Profile

Clean

20dB

10 dB

0dB

SWIPE

RPA (%)
RCA (%)

88.73 £ 5.43
89.24 + 5.28

84.45 £ 5.64
85.31 =5.19

59.78 & 11.58
62.85 = 11.07

32.04 +£ 11.84
37.31 £ 12.93

CREPE

RPA (%)
RCA (%)

96.51 4+ 3.23
96.84 4= 2.56

96.49 + 3.32
96.96 1 2.63

95.11 4 4.65
96.18 = 3.35

84.92 4 10.70
87.85 & 8.82

DeepFO

RPA (%)
RCA (%)

97.82 1+ 3.34
98.28 - 1.94

97.39 £ 3.76
98.09 4 2.10

94.774 6.03
96.35 + 3.72

79.52+ 14.0
84.37 = 10.71




EXpe rimental Results (with different dilation rates)
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Pitch Trajectories
(ground truth vs. predicted pitch)

The estimated pitch trajectories of
DeepFO in comparison with ground
truth under clean (top) and 0dB
noise (bottom).

Under no noise scenario DeepFO
produces near perfect pitch
estimation, while under noise there
are few errors here and there.
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Conclusions

Our proposed model with 77.4% fewer parameters can still perform better than
CREPE model.

Larger receptive field is indeed very important in pitch estimation model.

We also show that our model can capture reasonably well pitch estimation even
under the various levels of accompaniment noise.

3¢ MASSEY
¥

£y

¢4

€§)F unive RSITY
D




References

Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello, “CREPE: A convolutional representation

for pitch estimation,” in IEEE International Conference on Acoustics, Speech and Signal Processing,
2018, pp. 161-165.

Mingye Dong, Jie Wu, and Jian Luan, “Vocal pitch extraction in polyphonic music using convolutional

residual network,” in 20th Annual Conference of the International Speech Communication Association,
2019, pp. 2010-2014.

Beat Gfeller, Christian Frank, Dominik Roblek, Matt Sharifi, Marco Tagliasacchi, and Mihajlo Velimirovic,

“SPICE: Selfsupervised pitch estimation,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2020.




Thank you!

Questions?
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