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1. Motivations
In the context of the design of adaptive radar detection architectures, it is usually assumed that a set of
secondary data, which are target-free and share the same statistical properties of the interference as the
primary data (homogeneous assumption) is available.

The homogeneous assumption might be violated due to the effect of clutter edges, clutter statistical prop-
erty variation, clutter discretes, moving outliers and so on, leading to a severe performance degradation
for the detection schemes devised under the homogeneous assumption.

In order to circumvent this drawback, we jointly exploit the expectation-maximization (EM) algorithm
and the latent variable model to classify the collected data into homogeneous subsets assuming that a
given number of clutter boundaries is present.

2. Problem Formulation
The considered radar system is equipped with N ≥ 2 spatial and/or temporal channels and collects K
samples from the operating area, each sample corresponds to a specific range bin. The N -dimensional
complex vector corresponding to the kth range bin is denoted by zk, k = 1, . . . , K.

Suppose that the illuminated scenario can be divided into L regions and the samples of a given region
share the same statistical properties whereas those in different regions exhibit different statistical char-
acterization. Then the set of samples can be partitioned into L subsets of statistically homogeneous data,
whose lth component is given by

Ωl = {zil,1, . . . , zil,Kl}

where Kl, l = 1, . . . , L, denotes its cardinality.

In this paper, we assume that the samples in the lth region are statistically independent complex circular
Gaussian random vectors with zero mean and covariance matrix Ml which is assumed unknown, namely,

[zil,1 · · · zil,Kl] ∼ CNN (0,Ml, I), l = 1, . . . , L.

The goal is to estimate the subsets Ωl along with the associated parameter Ml, l = 1, . . . , L.

The maximization problem over M1, . . . ,ML is tantamount to the following optimization problem

σ̂(h) = arg max
σ

K∑
k=1

L∑
l=1

q
(h−1)
k (l) log f (zk|ck = l;Ml).

The above problem is addressed assuming two different expressions for Ml, l = 1, . . . , L, namely,

1. Ml is a positive definite Hermitian matrix;

2. Ml = σ2
c,lM, where σ2

c,l > 0 represents the clutter power of the lth class while M is the common
clutter structure shared by all the K range bins.

Proposition 1 Assume that K ≥ N and form 1 for Ml, then an approximation to the relative maximum
point of

g1(M1, . . . ,ML) =

K∑
k=1

L∑
l=1

q
(h−1)
k (l) log f (zk|ck = l;Ml)

has the following expression

M̂
(h)
l =

∑K
k=1 q

(h−1)
k (l)zkz

†
k∑K

k=1 q
(h−1)
k (l)

, l = 1, . . . , L.

Proposition 2 Assume that K ≥ N and form 2 for Ml, then, given the function

g2(σ2
c,M) =

K∑
k=1

L∑
l=1

q
(h−1)
k (l) log f (zk|ck = l;σ2

c,lM)

where σ2
c = [σ2

c,1 · · ·σ
2
c,L]T , an approximation to the relative maximum point can be achieved by means

of the following cyclic procedure with respect to the iteration index t, t = 1, . . . , tmax, (with tmax a
proper design parameter)

(σ̂2
c,l)
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k=1 q
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,

M̂(t),(h) =
1

K
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k=1

L∑
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zkz
†
k

(σ̂2
c,l)
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,

t = 1, . . . , tmax, and

(σ̂2
c,l)

(t),(h) =

∑K
k=1 q
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k (l)z

†
k(M(t−1),(h))−1zk

N
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(h−1)
k (l)

,

t = 2, . . . , tmax, l = 1, . . . , L.

Once the unknown quantities have been estimated, data classification can be accomplished by exploit-
ing the following rule

∀k = 1, . . . , K : zk ∼ CNN (0, M̂
l̂k

),

where
l̂k = arg max

l=1,...,L
q

(hmax)
k (l).

3. Classification Architecture Designs
Let us introduceK independent and identically distributed discrete random variables, cks say, which
take on values in {1, . . . , L} with pmf

P (ck = l) = pl, k = 1, . . . , K,

and such that when ck = l, then zk ∼ CNN (0,Ml). As a consequence, the pdf of zk can be written as

f (zk;θ) =

L∑
l=1

plf (zk|ck = l;Ml) = Eck[f (zk|ck;θ))],

where Eck[·] denotes the statistical expectation with respect to ck,

θ =
[
pT ,σT

]T
p = [p1 · · · pL]T , σ =

[
νT (M1) · · ·νT (ML)

]T
, ν(·) a vector-valued function selecting the generally

distinct entries of the matrix argument, and

f (zk|ck = l;Ml) =
1

πNdet(Ml)
exp{−Tr [M−1

l zkz
†
k]}.

According to the EM algorithm, assume that the (h− 1)th estimate of the parameter θ is available, the
E-step leads to

q
(h−1)
k (l) = p(ck = l|zk; θ̂

(h−1)
) =

f (zk|ck = l; M̂
(h−1)
l )p̂

(h−1)
l

L∑
l′=1

f (zk|ck = l′; M̂(h−1)
l′ )p̂

(h−1)
l′

,

whereas the M-step consists in the following maximization problem

θ̂
(h)

= arg max
θ

K∑
k=1

L∑
l=1

q
(h−1)
k (l) log

f (zk|ck = l;Ml)pl

q
(h−1)
k (l)

Note that the maximization problem with respect to pl and Ml, l = 1, . . . , L can be solved separately.
More precisely, the optimization with respect to p can be solved exploiting the method of Lagrange
multipliers. It is not difficult to show that the optimizer is

p̂
(h)
l =

1

K

K∑
k=1

q
(h−1)
k (l) .

4. Illustrative Examples
The considered covariance matrix model is given by

Ml = σ2
c,lMc,

where Mc(i, j) = ρ|i−j| with ρ = 0.9. In addition, we assume N = 16, K = 96, L = 3, K1 = 32,
K2 = 32, K3 = 32, and consider the following three cases for the clutter power levels: (1) [20,25,30]
dB; (2) [20,30,40] dB; (3) [20,35,50] dB.

The performance of the proposed classification architectures is assessed resorting to standard Monte
Carlo counting techniques over 1000 independent trials and the performance metrics are

1. the classification results of one single Monte Carlo trial;

2. the root mean square classification error (RMSCE) with the classification error defined as the num-
ber of range bins whose class is not correctly identified.

Table 1: RMSCE for different clutter powers

case (1) case (2) case (3)

Proposition 1 19.85 2.87 0.29

Proposition 2 3.10 0.06 0

These simulation results confirm the superiority of the classification scheme based on Proposition 2, in-
dicating that a better classification performance can be achieved exploiting a priori information about
the structure of the clutter covariance matrix since the adopted clutter covariance matrix model is
more compliant with Proposition 2 than Proposition 1.
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