Context aware modelling of prosody (CAMP)

A two-stage approach to modelling prosody in context

Zack Hodari ICASSP 2021

Motivation

- Speech has two channels of information: lexical and prosodic
- TTS models the lexical information well, but not the prosodic information
- Humans use **context** information to plan their prosody

To improve prosody we need more **context**

Capturing prosody

Prosody has no orthography

- *stage-1*: Learn a disentangled prosody representation

```
Synthesising prosody
```

– Prosody is determined by context

- *stage-2*: Use additional context information for prosody prediction

CAMP Context aware model of prosody

- *stage-1*: Prosody representation learning

- *stage-2*: Prosody prediction using context

Models and experiments

- DurIAN+ Tacotron-2 with an explicit duration model
- ORA Autoencoder using oracle prosody
- CAMP ORA using predicted prosody

S2S

– Tacotron-2 like model

DurlAN+

- Tacotron-2 with jointly-trained duration model

Baseline preference test

- S2S uses implicit duration modelling (i.e. attention)
- DurIAN+ uses explicit duration modelling (i.e. a duration model)

	DurIAN+ (55.7%)		No-pref (12.8%)	S2S (32	1.5%)	
0	25 5	0	-	75	10)0
	Prefe	rer	nce			

DurlAN+

- Tacotron-2 with jointly-trained duration model

ORA – Oracle prosody TRAINING STAGE 1

- Autoencoder model for representation learning

CAMP – Predicted prosody

- Context-based prediction of prosody
- Proposed model using two-stage training

Prosody predictor TRAINING STAGE 2

- Predicts prosody representation
- Replaces reference encoder
- Uses 1 or more context encoders

Prosody predictor TRAINING STAGE 2

- Predicts prosody representation
- Replaces reference encoder
- Uses fine-tuned BERT_{BASE}

Evaluation of CAMP

– MUSHRA evaluation of our proposed model – CAMP

DurlAN+	Lower-bound	Duration-based Tacotron-2
CAMP	Proposed	Predicted prosody using BERT
ORA	Top-line	Oracle prosody
NAT	Upper-bound	Natural speech (no vocoding)

CAMP

Conclusion

- Train duration model jointly
- Use a prosodically-relevant loss
- Incorporate additional context

٠

Thanks!