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Joint blind source separation is an active area of research due

to its numerous applications
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The goal is to process the data

to explore the underlying structure of multi-modal datasets, i.e., information
extraction by integrating and modeling multiple modalities

to extract meaningful information about the underlying sources collected multiple
subjects



IVA is an effective solution for joint blind source separation

Damasceno, Cavalcante, Adali and Boukouvalas ICASSP 2021 3/13

IVA is an extension of ICA to multiple datasets

ICA: x = As y = Wx, W ∈ RN×N

IVA: x[k] = A[k]s[k] y[k] = W[k]x[k], W[k] ∈ RN×N , k = 1,...,K



IVA and mutual information (MI)
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The goal in IVA is to estimate K demixing matrices, W[k], to
yield maximally independent source estimates

y[k] = W[k]x[k]

such that each SCV is maximally independent of all other SCVs.

MI cost function

JIVA(W[k]) =
N∑

n=0

H(yn︸ ︷︷ ︸)
−E{log p(yn)}

−
K∑

k=0

log
∣∣∣det

(
W[k]

)∣∣∣− C

where yn is the nth estimated SCV and H(yn) denotes its differential entropy.

Instead of minimizing the MI cost function with respect to W[k], we use a
decoupling procedure to minimize with respect to each row of W[k].



Decoupling MI cost function provides optimization benefits
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Decoupling procedure

JIVA(w
[k]
n ) = H[yn]− log

∣∣∣∣(h
[k]
n

)>
w

[k]
n

∣∣∣∣− C
[k]
n

for n = 1, ...,N, where h
[k]
n is the unit length vector is perpendicular to w

[k]
j , ∀j 6= n.

Gradient

∂JIVA(w
[k]
n )

∂w
[k]
n

= −E
{
∂ log (pn (yn))

∂y
[k]
n

x[k]

}
−

h
[k]
n

(h
[k]
n )>w

[k]
n

where p(yn) denotes its probability density function (PDF).

Estimation of PDF for each SCV yn plays an important role in the development
of IVA algorithms.



The maximum entropy principle
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The best probability distribution to model a dataset is the one with largest entropy

max
p(y)

H(p(y)) = −
∫
RK

p(y) log p(y)dy

s.t.

∫
RK

ri (y)p(y)dy = αi , for i = 0, ...,M

where y ∈ RK represents the dataset and ri (y) are the constraints.

Lagrangian form

L(p(y)) =−
∫
RK

p(y) log p(y)dy

+
M∑
i=0

λi

∫
RK

(ri (y)− αi )p(y)dy

where λi are the Lagrangian multipliers.

Density function

p(y) = e−1+
∑M

i=0 λi ri (y)

λi are estimated by Newton iterations.



Global and local constraints provide flexible model
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Global constraints

r0(y) = 1
r1(y) = y

r2(y) = y2

r3(y) = y
(1+y2)

provide information about the PDF’s
overall statistics, such as the mean,
variance, and certain higher order
statistics.

Local constraint

Gaussian Kernel:

q(y) =
1√

|Σ|(2π)K
exp (−

1

2
(y − µ)Σ−1(y − µ)′)

provides localized information about the PDF.

Estimation performance only using global constraints and using global and local constraints.



Multivariate entropy maximization with kernels (M-EMK)
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Quasi-Monte Carlo multidimensional integral approximation

QT ,K (p(y)) = Ω

(
1

T

T−1∑
i=0

p(s)

)
where Ω, T , p and s denote the dimensional measure of the integration region, sample size,
density function and the generated quasi-random points sequence, respectively.



Density estimation performance of M-EMK
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Approximation to T = 10000 samples generated from a
mixture of multivariate generalized Gaussians.



Incorporation into the IVA model
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M-EMK density function

p(y) = exp

{
−1 +

M∑
i=0

λi ri (y)

}

IVA-M-EMK

JIVA(W[k]) =
N∑

n=0

−E {log p(y)} −
K∑

k=0

log
∣∣∣det

(
W[k]

)∣∣∣− C

The gradient w.r.t. w
[k]
n is given by

∂JIVA(w
[k]
n )

∂w
[k]
n

= −
M∑
i=0

λi
∂ri (yn)

∂y
[k]
n

E
{

x[k]
}
−

h
[k]
n(

h
[k]
n

)>
w

[k]
n

λi are provided by M-EMK.

IVA-M-EMK takes advantage of the accurate estimation capability of M-EMK to
improve source separation performance.



Experimental results using simulated sources

Damasceno, Cavalcante, Adali and Boukouvalas ICASSP 2021 11/13

K = 3, one unimodal MGGD,
and two multi-modal MGGD sources.

K = 2, three multi-modal
MGGD sources.

Performance comparison in terms of Joint ISI and average CPU time for different number of sample size.



Summary of contributions

Present a new multivariate probability density estimator based on the maximum
entropy principle that

– provides flexible multivariate PDFs while keeping computational complexity low;

– provides superior performance over popular density estimation procedures;

Derive an efficient IVA algorithm that

– accurately separates sources from a wide range of multivariate PDFs outperforming
widely used IVA algorithms;

– enables the application of IVA to many practical applications where a flexible
multivariate density modeling is needed;
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