

SEMI-SUPERVISED FEATURE EMBEDDING FOR DATA SANITIZATION IN REAL-WORLD EVENTS

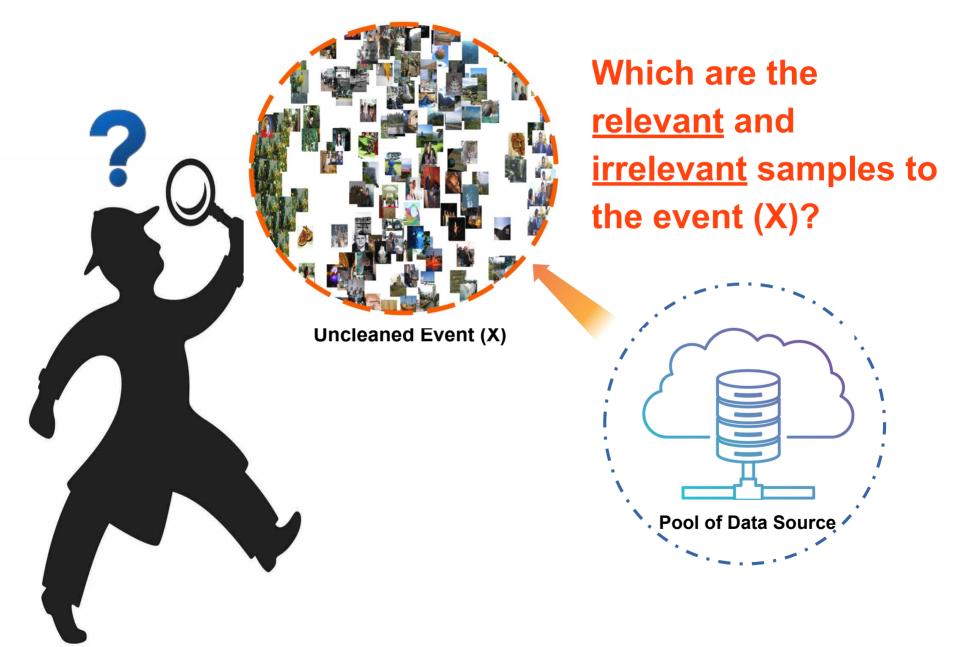
(ICASSP-2021, Paper ID: 1546)

Bahram Lavi, José Nascimento, and Anderson Rocha

Reasoning for Complex Data Lab., Institute of Computing, University of Campinas, SP, Brazil

Bahram.Lavi@ic.unicamp.br

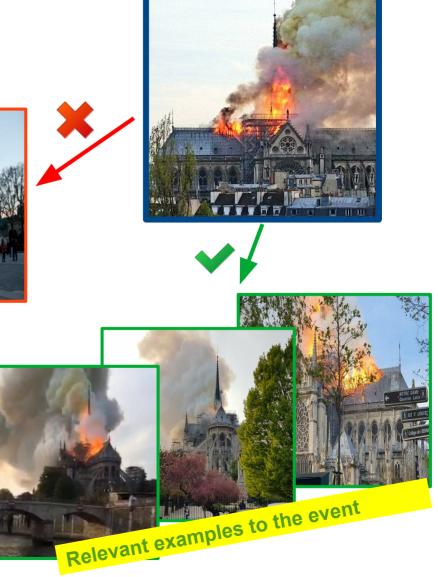
Forensics on Real-World Events



What is Image Data Sanitization?

 The goal is determining of the relevant samples from irrelevant ones upon an event of interest.

Image examples are taken from Notre Dame Cathedral Fire Dataset.



Collected Datasets

	Event	Location	Year	Nu Positive	imber of in Negative	nages Unlabeled	Source
	Notre-Dame Cathedral	Paris, France	2019	1660	22023	0	Twitter (93.2% of the images) Flickr (6.8% of the images)
"Big"-data events	Grenfell Tower	London, UK	2017	14161	0	0	Forensic Architecture team
	Marathon Bombing	Boston, US	2013	19092	0	0	YouTube video frames
	Bangladesh Fire	Dhaka, BD	2019	125	125	709	Twitter (96.0% of the images) Flickr (4.0% of the images)
Small-data events							
	National Museum	Rio de Janeiro, Brazil	2018	125	125	440	Twitter (82.5% of the images) Flickr (16.7% of the images) GooglePlus (0.8% of the images)

Instances of Events

Notre-Dame cathedral	
Grenfell Tower	
Marathon bombing	
Bangladesh Fire	
National Museum	

Image Characterstics

- Data-Driven Features
 - VGG16
 - InceptionV4
 - Xception

Descriptor	Feature Dimensionality	Image input size		
VGG16	4096	224×224		
InceptionV4	1536	299×299		
Xception	2048	299×299		
gBiCov	1536	150×150		
HOG	648	150×150		

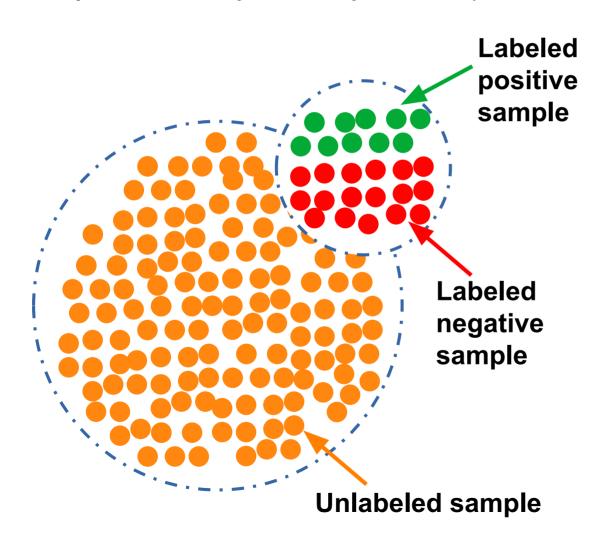
Complementary Features

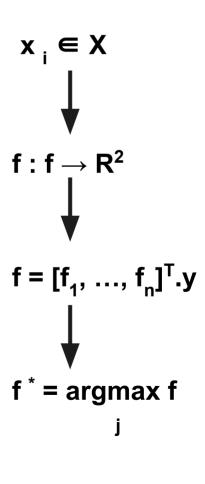
- Gabor filters and Covariance (GBICOV) based descriptor
- Histogram Oriented Gradiant (HOG)

Embedding Learning method

Local and Global Consistency (LGC) Semi-Supervised techniq.

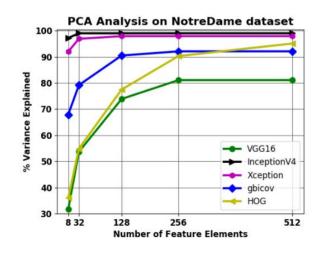
[D. Zhou et al. "Learning with local and global consistency" in "Advances in Neural Information Processing Systems".]

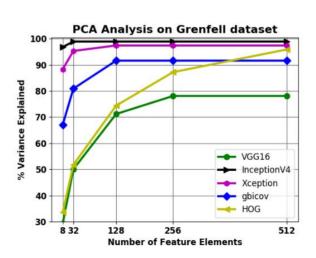




Experimental Setup

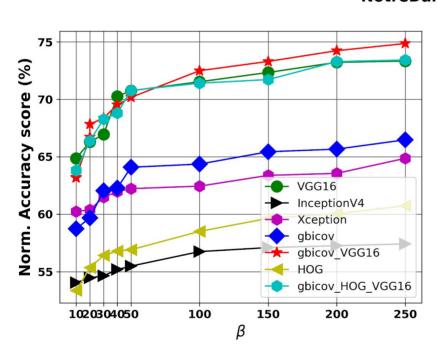
- We selected β randomly labeled data samples for each target dataset.
- We adopted kNN to construct our affinity matrix with k=16.
- The LGC algorithm was iterated up to 300.
- We applied PCA to reduce the dimension of each feature to 128 elements.

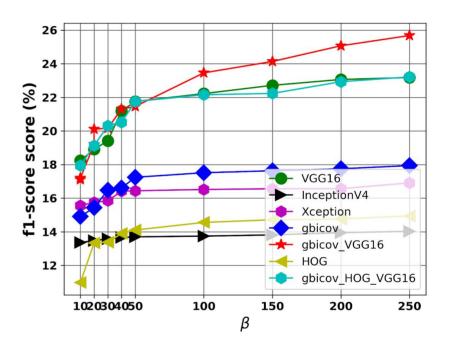




Some Results

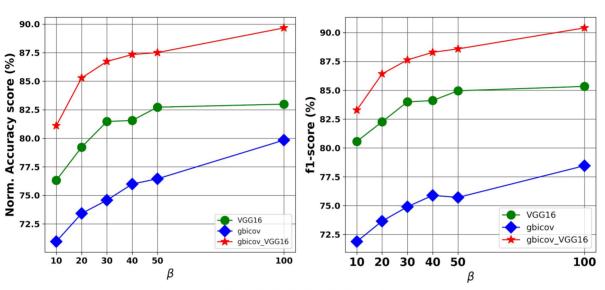
NotreDame Data set



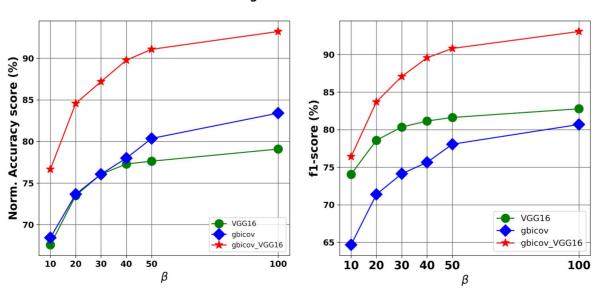


Some Results (Cont.)

National Museum Data set



Bangladesh Fire Data set



Conclusions

- Training a supervised learning method for image sanitization is daunting...
- Label spreading has shown to be adequate to this problem properly propagating the labels in five events.
- The best performance accuracy in a range between 65% and 95%
- Exploring semi-supervised algorithms hold promise for the applications that are highly expensive on annotating data process

Future Work

 we are currently exploring a different set of graph-based semi-supervised techniques that fit with complex data structure.

 Also we explore self-supervised learning algorithms to generate robust feature representation upon the particular structure of an event.

Acknowledgement

This research was supported by São Paulo Research Foundation (FAPESP), under the thematic project "DéjàVu: Feature-Space-Time Coherence from Heterogeneous Data for Media Integrity Analytics and Interpretation of Events" with grant numbers 18/05668-3 and 20/02241-9.