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Motivation

* In real life applications, audio signals are often corrupted by accidental
distortions, such as impulsive noises, clicks and transmission errors.

» Speech Inpainting: the process of restoring the lost speech information from
the audio context.

* In our paper, we address the problem of Audio-Visual Speech Inpainting: in
addition to reliable audio-context, uncorrupted visual information is
exploited.

* This approach is beneficial especially when the time gaps are large (> 400
ms).

* Visual information was successfully used in many speech-related tasks (e.g.,
speech recognition, speech enhancement, speech separation, etc.), but it has
not adopted for speech inpainting yet.
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AV Speech Inpainting

* We use a deep learning model based on Bi-directional Long-Short Term
Memories (LSTM).

* The model works in the spectrogram domain and uses facial landmarks
motion (Morrone et al., 2019) as visual features.

 As done in previous work, we assume to know a priori the location of
uncorrupted and lost data. This information is used in the signal
reconstruction stage.
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Multi-Task Learning Approach

* In addition, we propose a Multi-Task Learning (MTL) approach, which attempt
to perform speech inpainting and phone recognition simultaneously.

* This strategy allows the distillation of phonetic information during training.

* The MTL training makes use of a Connectionist Temporal Classification (CTC)
loss to compute the error between the phone posteriors and the ground-truth
phone labels.

* The MTL loss, Jy71, consists of a weighted sum between the inpainting loss,
Juse, and the CTC loss, Jorc -

Jure, =Jusg + A +Jere, A ER
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Experimental Setup

- Dataset: GRID corpus (Cooke et al., 2006). Speaker-independent setting:
» Training set: 25 speakers, 1000 utterances per speaker.
» Validation set: 4 speakers, 1000 utterances per speaker.
» Test set: 4 speakers, 1000 utterances per speaker.

- We generate a corrupted version of the GRID corpus where random missing
time gaps with different durations are introduced in audio speech signals.

* To assess the performance of the AV models, we devise an audio-only
baseline models by simply removing the video input, leaving the rest
unchanged.

* Hyperparameters:

» BLSTM: 3 layers, 250 hidden units per layer
» Optimizer: Adam

» Learning rate: 0.001

» Mini-batch size: 8

» A weight MTL loss: 0.001
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We evaluate our systems with 4 metrics: L1 loss, PER' (Phone Error Rate), and
two perceptual metrics, STOl and PESQ.

A V. MTL L1y PERVY STOI A PESQaA
Unprocessed 0.838  0.508 0.480 1.634
X 0.482  0.228 0.794 2.458
X X 0.452  0.151 0.811 2.506
X X 0.476  0.214 0.799 2.466
X X X 0.445 0.137 0817 2.525

A: Audio V:Video MTL: multi-task learning with CTC

» AV models outperform the audio-only counterparts on all metrics.
» The MTL strategy is beneficial.

'PER is obtained with a phone recognizer trained on uncorrupted data. The PER score of uncorrupted speech is 0.069. @
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Time Gap Analysis
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Conclusion

* To the best of our knowledge, this is the first work that exploits vision for
the speech inpainting task.

* Audio-visual models strongly outperform audio-only models.
 Audio-only approach degrades rapidly when missing time gaps get large.

 Audio-visual approach is still able to plausibly restore missing information for
very long time gaps (> 400 ms).

 Learning a phone recognition task together with the inpainting task leads to
better results, although its contribution to performance is lower compared to
vision.
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