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• In real life applications, audio signals are often corrupted by accidental 
distortions, such as impulsive noises, clicks and transmission errors.

• Speech Inpainting: the process of restoring the lost speech information from 
the audio context.

• In our paper, we address the problem of Audio-Visual Speech Inpainting: in 
addition to reliable audio-context, uncorrupted visual information is 
exploited.

• This approach is beneficial especially when the time gaps are large (> 400 
ms).

• Visual information was successfully used in many speech-related tasks (e.g., 
speech recognition, speech enhancement, speech separation, etc.), but it has 
not adopted for speech inpainting yet.

Motivation
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• We use a deep learning model based on Bi-directional Long-Short Term 
Memories (LSTM).

• The model works in the spectrogram domain and uses facial landmarks 
motion (Morrone et al., 2019) as visual features.

• As done in previous work, we assume to know a priori the location of 
uncorrupted and lost data. This information is used in the signal 
reconstruction stage.

AV Speech Inpainting
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System Architecture
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Mask: uncorrupted/lost time-frequency bins ⊕: element-wise sum ⊙: element-wise product
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Multi-Task Learning Approach
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• In addition, we propose a Multi-Task Learning (MTL) approach, which attempt 
to perform speech inpainting and phone recognition simultaneously.

• This strategy allows the distillation of phonetic information during training.

• The MTL training makes use of a Connectionist Temporal Classification (CTC) 
loss to compute the error between the phone posteriors and the ground-truth 
phone labels.

• The MTL loss, 𝐽𝑀𝑇𝐿, consists of a weighted sum between the inpainting loss, 
𝐽𝑀𝑆𝐸, and the CTC loss, 𝐽𝐶𝑇𝐶 :

𝐽𝑀𝑇𝐿 = 𝐽𝑀𝑆𝐸 + 𝜆 ∙ 𝐽𝐶𝑇𝐶 , 𝜆 ∈ ℝ
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MTL System Architecture
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Mask: reliable/unreliable time-frequency bins ⊕: element-wise sum

CTC: Connectionist Temporal Classification ⊙: element-wise product
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Experimental Setup
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• Dataset: GRID corpus (Cooke et al., 2006). Speaker-independent setting:
➢ Training set: 25 speakers, 1000 utterances per speaker.

➢ Validation set: 4 speakers, 1000 utterances per speaker.

➢ Test set: 4 speakers, 1000 utterances per speaker.

• We generate a corrupted version of the GRID corpus where random missing 
time gaps with different durations are introduced in audio speech signals.

• To assess the performance of the AV models, we devise an audio-only 
baseline models by simply removing the video input, leaving the rest 
unchanged.

• Hyperparameters:
➢ BLSTM: 3 layers, 250 hidden units per layer

➢ Optimizer: Adam

➢ Learning rate: 0.001

➢ Mini-batch size: 8

➢ 𝜆 weight MTL loss: 0.001
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Evaluation Results
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We evaluate our systems with 4 metrics: L1 loss, PER1 (Phone Error Rate), and 
two perceptual metrics, STOI and PESQ.

➢ AV models outperform the audio-only counterparts on all metrics.

➢ The MTL strategy is beneficial.

1PER is obtained with a phone recognizer trained on uncorrupted data. The PER score of uncorrupted speech is 0.069.

A: Audio V: Video MTL: multi-task learning with CTC
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Time Gap Analysis
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Example - 800 ms Time Gap
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Conclusion
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• To the best of our knowledge, this is the first work that exploits vision for 
the speech inpainting task.

• Audio-visual models strongly outperform audio-only models.

• Audio-only approach degrades rapidly when missing time gaps get large.

• Audio-visual approach is still able to plausibly restore missing information for 
very long time gaps (> 400 ms).

• Learning a phone recognition task together with the inpainting task leads to 
better results, although its contribution to performance is lower compared to 
vision.
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