Nonnegative Unimodal Matrix Factorization
 Andersen Ang, Nicolas Gillis, Arnaud Vandaele, Hans De Sterck

Abstract and contributions

- Introduce a new model: NuMF ($=$ NMF + unimodal).
- Propose BCD algo. to solve NuMF, the algo. $=$ brute-force + accelerated projected gradient + Multi-Grid (MG)
- Prove restriction operator preserves the unimodality in MG
- Provide preliminary identifiability results of NuMF on special cases. - Empirical results confirm 1) the effectiveness of the pr posed algo.
and 2) the theory on NuMF

Nonnegative unimodality (Nu)

Def. 1. (Nu) $\mathbf{x} \in \mathbb{R}^{m}$ is $N u$ if $\exists p \in[m]:=[1,2, \ldots, m]$ such that
$0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{p} \geq x_{p+1} \geq \cdots \geq x_{m} \geq 0$.

- Notation: $\mathbf{x} \in \mathcal{U}_{+}^{m, p}$ and $\mathbf{x} \in \mathcal{U}_{+}^{m}$.
- p is the location of change of tonicity.
- p can be nonunique.
- p is known in $\mathcal{U}_{+}^{m, p}$, this set is convex
- p is unknown in \mathcal{U}_{+}^{m}, this set is nonconvex.

Examples of Nu vectors: \qquad C

Nu Matrix Factorization Def. 2. (NuMF) Given $\mathrm{M} \in \mathbb{R}_{+}^{m \times n}, r \in \mathbb{N}$ solve

	$\frac{1}{2}\\|\mathbf{M}-\mathbf{W H}\\|_{F}^{2}$	fitting term
subject to	$\mathrm{H} \geq 0$	\mathbf{H} is nonnegative
	$\mathbf{w}_{j} \in \mathcal{U}_{+}^{m} \forall j \in[r]$	columns of \mathbf{W} are Nu

- We solve NuMF by Block Coordinate Descent (BCD).
- HALS: we update the columns of \mathbf{W} and rows of \mathbf{H} one-by-one - Subproblem on \mathbf{H} is NNLS, simple.

Subproblem on \mathbf{W} is nonconvex, difficult to solve \Longrightarrow the main difficulty in solving NuMF

Characterizing Nu

That is, we characteized the membership of Nu set by a matrix-vector product by introducing a integer parameter p.

Subproblem on W

- The Nu-characterization means subproblem on \mathbf{w}_{i} is a Linearly-- The Nu-characterization means subproblem on \mathbf{w}_{i} is a
constrained Quadratic Program with unknown integer p_{i}

$$
\left.\min _{\mathbf{w}_{i}} \frac{\left\langle\mathbf{w}_{i}, \mathrm{Bw}_{i}\right\rangle}{2}-\left\langle\mathbf{c}, \mathbf{w}_{i}\right\rangle \text { s.t. } \mathbf{U}_{p_{i}, \mathbf{w}_{i}} \geq 0, \mathbf{w}_{i}^{\top} \mathbf{1}_{m}=1 . \quad \quad^{*}\right)
$$

for some constant $\mathbf{B}, \mathbf{c}, c$.

- In general, p_{i} is unknown

$$
\min _{\mathbf{w}_{i}, p_{i}} \frac{\left\langle\mathbf{w}_{i}, \mathrm{Bw}_{i}\right\rangle}{2}-
$$

\qquad

- Solve (${ }^{* *}$) by brute force: try all p_{i} on $\left({ }^{*}\right)$, pick the best one as p_{i}^{*}.
- Speed up 1: solve (${ }^{*}$) by accelerated Projected Gradient
- Change of variable $\mathbf{y}=\mathbf{U x}$ change (${ }^{*}$) to another LCQP

$$
\min _{\mathbf{y}} \frac{\langle\mathbf{y}, \mathbf{Q y}\rangle}{2}-\langle\mathbf{p}, \mathbf{y}\rangle \text { s.t. } \mathbf{y} \geq \mathbf{0}, \mathbf{y}^{\top} \mathbf{b}=1 .
$$

- Projection step: min $\frac{1}{2}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}$ s.t. $\mathbf{y} \geq \mathbf{0}, \mathbf{y}^{\top} \mathbf{b}=1$, which can be solved by partial Lagrangian

$$
\mathbf{y}^{*}=\min _{\mathbf{y} \geq \mathbf{0}} \max _{V} \frac{1}{2}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}+\nu\left(\mathbf{y}^{\top} \mathbf{b}-1\right)
$$

* Equality due to strong duality: \mathbf{U} nonsingular $\Longrightarrow \mathbf{b}>\mathbf{0} \Longrightarrow$
Slater's condition. Slater's condition.
(\#) has closed-form solution as soft-thresholding: $\left[\mathbf{z}-\nu^{*} \mathbf{b}\right]_{+}$, where μ^{*} is the optimal Lagrangian multiplier, which is the root of the piece-wise linear equation

$$
\sum_{i=1}^{m} \max \left\{0, z_{i}-\nu_{i}-b_{i}\right\} b_{i}=1,
$$

which can be solved with complexity $\mathcal{O}(m)$ to $\mathcal{O}(m \log m)$ by
sorting the break points z_{i} sorting the break points $\frac{z_{i}}{b_{i}}$

- Speed up 2: we speed up brute force on p_{i} by dimension reduction: make the search space for p_{i} smaller.
- We use multi-grid: because it preserves Nu .

Multi-grid: dimension reduction $\underset{\mathbf{R} \in \mathbb{R}^{m_{1} \times m}}{\text { Def. }}$ 3. Restriction operator \mathbf{R} is defined as $\mathbf{x} \mapsto \mathbf{R x}$, where $\mathbf{R} \in \mathbb{R}_{+}^{m_{1} \times m}$ with $m_{1}<m$

$$
\mathbf{R}=\left[\begin{array}{ccccc}
a & b & & & \\
& b & a & b & \\
& \cdots & \cdots & \cdots & \\
& & b & a & b \\
& & & & b
\end{array}\right], a>0, b>0, a+2 b=1 .
$$

Theorem 1. (Restriction preserves $N u$) Let $\mathrm{x} \in \mathcal{U}_{+}^{m, p}$ and $\mathbf{R} \in \mathbb{R}^{m_{1} \times m}$, then $\mathbf{y}=\mathbf{R x} \in \mathcal{N}_{+}^{m_{1}, p_{y}}$ with $p_{y} \in\left\{\left\lfloor_{2}^{p}+1\right\rfloor,\left\lfloor\left\lfloor_{2}^{p}\right\rfloor\right\}\right.$, where $\mathcal{N}_{+}^{m, p}=\mathcal{U}_{+}^{m, p} \cup \mathcal{U}_{+}^{m, p+1}$, which is a subset of the $N u$ vectors.

- Proof in 3 sentences, the core ideas:

1. $\mathrm{Rx}=\mathrm{Ax}+\mathrm{Bx}+\mathrm{Cx}$

2. $\mathbf{A x}, \mathrm{Bx}, \mathbf{C x}$ are Nu , because they are all subvector of a Nu vector. 3. The p values of $\mathbf{A x}, \mathbf{B x}, \mathbf{C x}$ are at most differ by 1 , so by the Nu-characterization, their sum is Nu.

The whole algorithm

 Algorithm 1: Proposed algorithm for solving NuMF Result: W, \mathbf{H} that solves NuMfor $k=1,2, \ldots$ do
for $i=1,2, \ldots, r$
Update \mathbf{h}^{i} by solving a NNLS (with closed-form update);
U pdate \mathbf{w}^{i} by solving $\left({ }^{* *}\right)$ using brute force search on p_{i};

- Restrict the data along column dimension
- Solve the coarse problem ($* *$):

Try all p_{i} on the coarse problem (*). Solve it by accelerated projected gradient, pick the best sol. as p_{i}^{*}

- Prolongate p_{i} to the original dimension

Solve the subproblem (*) on the original fine grid with the nd
end
Preliminary identifiability results

- Identifiability: when does solving NuMF recover the ground truth. - Identifiability of NuMF is highly related to the support of the Nu - vectors.

Def. 4. (Strictly disjoint)
with supp $(\mathbf{x})=\left[a_{x}, b_{x}\right]$ and $\operatorname{supp}(\mathbf{y})$ iven two vectors $\mathbf{x}, \mathbf{y} \in \mathcal{U}^{m}$ with supp $(\mathbf{x})=\left[a_{x}, b_{x}\right]$ and $\operatorname{supp}(\mathbf{y})=\left[a_{y}, b_{y}\right]$. The two vectors are
called strictly disjoint if $a_{x}>b_{y}+1$. Theorem 2. (Strictly disjoint $N u$ vectors) Assumes $\mathrm{M}=$
$\overline{\mathrm{W}} \overline{\mathrm{H}}$ Solving
NuMF
recovers $(\overline{\mathrm{W}}$
$\mathbf{H})$ if $\overline{\mathbf{W}} \overline{\mathbf{H}}$. Solving NuMF recovers $(\overline{\mathbf{W}}, \overline{\mathbf{H}})$ if

1. \mathbf{W} is Nu and all the columns have strictly disjoint support.
2. $\overline{\mathbf{H}} \in \mathbb{R}_{+}^{r \times n}$ has $n \geq 1,\left\|\bar{h}^{\bar{i}}\right\|_{\infty}>0$ for $i \in[r]$.

- Strong assumptions, but they are satisfied in chemistry datasets. - The theorem holds for $r \geq n$ which is uncommon for most NMF models.
Lemma 1. (On demixing two non-fully overlapping $N u$ vectors) \quad Given two non-zero vectors \mathbf{x}, \mathbf{y} in \mathcal{U}_{+}^{m} with supp $(\mathbf{x}) \nsubseteq$
supp (\mathbf{y}) and supp $(\mathbf{x}) \nsubseteq$ sup $(\mathbf{y}$) I \mathbf{x}, \mathbf{y} are
 negative coefficients a, b, c, d, then we have either $\mathbf{u}=\mathbf{x}, \mathbf{v}=\mathbf{y}$ or $\mathbf{u}=\mathbf{y}, \mathbf{v}=\mathbf{x}$.
Theorem 3. Assumes $\mathrm{M}=\overline{\mathrm{W}} \overline{\mathbf{H}}$. If $r=2$, solving NuMF recovers $(\overline{\mathbf{W}}, \overline{\mathbf{H}})$ if the col. of $\overline{\mathbf{W}}$ satisfy the conditions of Lemma 1 and $\overline{\mathbf{H}} \in \mathbb{R}_{+}^{r \times n}$ is full rank.

Experiments

Toy example on MG performance

MG save 75% time for 2 -layer. Faster than existing approaches. - NuMF is ncvx, but we have convergence to global minima because the dataset satisfy the identifiability assumptions.

On data with $r>n(r=8, n=1)$

- Factorization rank > data dimension, not possible for NMF.
- First three peaks in the data satisfy Theorem 2 so they are perfectly recovered. Other peaks have overlapped support and their decomposition is non-unique.
Identifiability of Nu vectors with overlapped support remains open
On GCMS data of Belgian beers

ㄴ A A A A
- Application of Nu in analytical chemistry.
- Other NMF models produce mixed results.

Conclusion and future works

NuMF: characterization, algorithm, theory, experimental verifications Future works: General identifiability theory of NuMF. Nu
rows of \mathbf{H} also Nu. Log-concavity of vectors. Applications.

Funding acknowledgements

NG acknowledges the support by the European Research Council (ERC starting grant No 679515), the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) underEOS project O005318F-RG47. HDS acknowledges support by NSERC of Canada.

References

[1] Andersen Man Shun Ang, Nicolas Gillis, Arnaud Vandaele, and Hans De Sterck Nonnegative unimodal matrix factorization.
[2] Man Shun Ang. Nonnegative Matrix and Tensor Factorizations: Models, Al
gorithms and Applications. PhD thesis, Univesity of Mons, 2020.

