SLAP: A Split Latency Adaptive VLIW Pipeline Architecture which enables on-the-fly Variable SIMD Vector Length‘

Ashish Shrivastava, Alan Gatherer, Tong Sun, Sushma Wokhlu, Alex Chandra ‘

The Problem Compute Scalar processing

Type

SIMD processing

1o How do we
5G (even more than 4G) 7% vary
is a collection of Scalar/SlMD
&

disparate, evolving 30%
requirements

ratio on the

")
&(0 N ,0(\‘ X 4 - -
short latr S & I fly with little
S &e@ A
& P memory
< . .
&'
Intense Processing: FFT, nMIMO A Digital Signal Processors used in Orga n |Zat|° n
Baseband Infrastructure support)
Complex Control: short TTI, mMTC, CatM a mix of control and vector Ovel’h ead :

processing using Single
Instruction Multiple Data (SIMD)
architectures

Evolving SIMD to SLAP: Current SIMD architecture

. / Instruction Fetch and decode from a single program
gt P Posine rses
| "onetnn s ares

* SIMD Vector processing
built for worst case vector
load is often unused

Scalar execution pipeline

Vector execution pipeline
» Control and vector data

access often collide in L2

* Wide vector access has
variable access time
across vector to shared L2

e Common load store

A single stall anywhere due to memory access will stall

all processing. Maximum access stall experienced
Lockstep memory access

Evolving SIMD to SLAP: SLAP SIMD architecture

Instruction Fetch and decode from a single program

Scalar execution pipeline

Relative timing of control and
SIMD lanes has elastic timing
FIFOs

* Each lane of SIMD and the scalar
unit process independently in
time off a single instruction
stream

P — —— Y
E =)

Average access stall is experienced as
lanes run independently

SIMD execution split into
time independent lanes

~ Common load store initiation

Independent load store access

SLAP based Variable SIMD Vector Architecture

Micro local DU memory access decouples
from micro local CU execution

Asynchronous execution of CUs /DUs, which
increases parallelism and reduces stalls

0-L1 for vector, no data organization. CU
natural lag to DU aute synchronizes
compute/access

Different Scalar and Vector access

mechanism to L2

‘ oata Memory ‘

Data accessis randomized e
probabilistic parallel

Results for Production Memory Traces

Vactor/Scalar Histogram

of operations ina groupof 1000 VLW buncles sy

of =5 o
VLIW instruction Bundies in 10008 —__

Name % Improvement

Performance improvements due to

reduction in effective stalls with realistic L2 Region 1 7.10%
access. Region 2 30.50%
) o Region 3 10.50%
FIFOs to |rzp|>ement e!ast\dctlrr:(mg‘are low Region 4 4.10%
energy and size compared to, for instance .
8y g ’ Region 5 7.70%
adding more registers. =
All Regions (Overall) 11.79%
% Improvement Performance-Area Efficiency
(compare to VLIW-DSP (Compare to VLIW-DSP with
% Degradation % Reduction in with 32K Data$ + Y6Area 32K Data$ + Memory
DSP Archi (compare to flat memory) | Cache D i Memory
VLIW-DSP (Flat memory) 0.00% N/A N/A N/A N/A
VLIW-DSP (32K Data$) 33.64% 0.00% 0.00% 0.00%
[SLAP_VLIW 1 (24-FIFO, 8K DataS) 26.12%
SLAP_VLIW 2 (24-FIFO, 16K Data$) 23.69%
SLAP_VUIW_3 (24-FIFO, 32K Data$) 22.42%
[SLAP_VLIW_4 (32-FIFO, 8K Data$) 25.13%
SLAP_VLIW 5 (32-FIFO, 16K Data$) 22.79%
[SLAP_VLIW_6 (32-FIFO, 32K Data$) 21.49%

+ Memory stalls can be mitigated in a classic architecture by increasing the L1 cache size

+ In our comparison with real 5G algorithms we compared classic SIMD with 32KB data
cache to variations of cache and FIFO size for SLAP

+ Performance/area improvements of up to 8% are observed with improvements with as
little as 8KB L1 cache.

