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DSP Archi (compare to flat memory) | Cache D i Memory
VLIW-DSP (Flat memory) 0.00% N/A N/A N/A N/A
VLIW-DSP (32K Data$) 33.64% 0.00% 0.00% 0.00%
[SLAP_VLIW 1 (24-FIFO, 8K DataS) 26.12%
SLAP_VLIW 2 (24-FIFO, 16K Data$) 23.69%
SLAP_VUIW_3 (24-FIFO, 32K Data$) 22.42%
[SLAP_VLIW_4 (32-FIFO, 8K Data$) 25.13%
SLAP_VLIW 5 (32-FIFO, 16K Data$) 22.79%
[SLAP_VLIW_6 (32-FIFO, 32K Data$) 21.49%

+ Memory stalls can be mitigated in a classic architecture by increasing the L1 cache size

+ In our comparison with real 5G algorithms we compared classic SIMD with 32KB data
cache to variations of cache and FIFO size for SLAP

+ Performance/area improvements of up to 8% are observed with improvements with as
little as 8KB L1 cache.



