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Introduction and Motivation

Issues and Motivation
Introduction and Motivation

Machine Learning Today : Curse of Dimensionality
Large Datasets — many samples
Complex Datasets — large dimension
Problems become intractable

Use distributed methods
Distribute smaller computation assignments
Multiple servers complete various tasks

Drawbacks of Distributed Synchronous Computations
Requires all servers to respond — communication overhead
What if stragglers are present ?
Stragglers — servers with delays or non-responsive
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Introduction and Motivation

Coded Matrix Multiplication (CMM)
1 Speed up distributive computation — matrix multiplication

2 Mitigate stragglers

Multiplying A,B :
Partition A,B and send information Di to the workers
Workers compute φi (Di ) and send it back
Main server recovers A · B
Waits for f = n − s fastest workers (s stragglers, out of n workers)
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Introduction and Motivation

Our Motivation and Approaches

Previous Methods :
Many different coding approaches :
I Polynomial, Short-dot, MatDot, MDS, Binary, Polar codes, etc.

Consider exact recovery — high computations

Few approximate schemes

Approximate MM suffices in ML applications

Our Approach :
Use outer-product for φi , and combine with weighting

Leverage CR approximate multiplication

Weighting results in further compression

1st approach : Use any gradient code to devise a Weighted-CMM

2nd approach : Utilize MatDot CMM
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Block CR-Multiplication

CR-Multiplication 1

Consider A ∈ RL×N and B ∈ RN×M

Let A(j) = j th column of A, and B(j) = j th row of B

AB =
∑N

j=1 A(j)B(j)

Sample from
{(

A(j),B(j)
)}N

j=1 with replacement, with probability :

pi ∝ ‖A(i)‖2 · ‖B(i)‖2

For r < N sampling trials, with index multiset S :

AB ≈ 1
r ·

∑
j∈S

1
pj

A(j)B(j)

 =
∑
j∈S

A(j)
√rpj

·
B(j)√rpj

We generalize this to sampling blocks

1. Drineas et al., “Fast MC Algorithms for Approximate Matrix Multiplication”, FOCS 2001
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Block CR-Multiplication

Block CR-Multiplication
Partition A and B into K = N/τ block pairs :

A =
[
Ã1 · · · ÃK

]
and B =

[
B̃T
1 · · · B̃T

K

]T

Ãi ∈ RL×τ and B̃i ∈ Rτ×M =⇒ Ãi B̃i is a rank-τ outer product

We consider t = r/τ sampling trials, with index multiset S̄ (s.t. |S̄| < K )

C̃ = 1√
t
[
ÃS̄1
/√

ΠS̄1
. · · · ÃS̄t

/√
ΠS̄t

.] ∈ RL×tτ

R̃ = 1√
t

[
B̃T
S̄1

/√
ΠS̄1

. · · · B̃T
S̄t

/√
ΠS̄t

.
]T
∈ Rtτ×M

Optimal sampling distribution that minimizes the variance of Y = C̃ R̃ is :

Πi = ‖Ãi‖F‖B̃i‖F
K∑

l=1
‖Ãl‖F‖B̃l‖F

for i = 1, 2, ...,K
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Block CR-Multiplication

Main Result

Theorem (Theorem 2.1)

The estimator Y = C̃ R̃ is unbiased, while the sampling probabilities {Πi}K
i=1

minimize Var(Y ), and ‖AB − C̃ R̃‖2F = O
(
‖A‖2F‖B‖2F/t

)
.

For convenience, we can define S ∈ RN×r s.t. :

C̃ = A · S and R̃ = ST · B =⇒ AB ≈ A(SST )B .

The matrix S is determined by S̄ and {Πi}K
i=1.
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Weighted CR-Multiplication

Weighted CR-Multiplication
Idea : Only consider one copy of sampled pairs, and weight them accordingly.

Sample until t distinct blocks are drawn

For each ι ∈ S̄, let wι = #{times ι is in S̄}
I This gives us the weight vector w ∈ N1×K

0

I = S̄ ∩ NK the index set of S̄, i.e. |I| = t∑
j∈S̄

Ã(j)B̃(j) =
∑
i∈I

wi · Ã(i)B̃(i)

By appropriately reweighting, we have Sw s.t. C̃ R̃ = A(SwST
w )B

Theorem (Proposition 2.3)
The resulting approximations from the algorithms using S and Sw, are identical.

Benefit : Consider ‖w‖1 many sampled pairs, while only storing ‖w‖0.
Benefit : More succinct representation.
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Weighted CMM

Weighted CMM
Construct CMM schemes which return weighted sum of outer products
I regardless of which workers respond, we will always have the same weighted

approximate result
I encoding B̃, decoding ã

Di =
(

1√
tΠi
· Ãi ,

1√
tΠi
· B̃i

)
; φi (Di ) = 1

tΠi
· ÃT

i B̃i

F is the index set of the f responsive workers

We provide two approaches
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Weighted CMM

WCMM Schemes From Gradient Coding

The output of a gradient code is the sum of vectors 2 — the partial gradients
. Condition : aT

F · B = 11×t for all possible F

Let X =
[
φ1(D1) · · · φt(Dt)

]
Let w̃ be the restriction of w to nonzero entries

Consider any GC (aF ,B) :
Encoding : B̃ := B · diag(w̃)⊗ IL
Decoding : ãT

F := aT
F ⊗ IL

=⇒ ãT
F ·
(
B̃ · X

)
= · · · = (w̃⊗ IL) · X =

t∑
i=1

w̃i · φi (Di )

Theorem (Proposition 3.2)
After compressing A,B by ρ > 1, we can now tolerate s̀ = ρ(s + 1)− 1 stragglers.

2. Tandon et al., “Gradient Coding : Avoiding Stragglers in Distributed Learning”, ICML 2017
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Weighted CMM

WCMM Scheme From MatDot CMM

MatDot 3 is a polynomial CMM which utilizes outer products

Let x1, ..., xn ∈ Fq distinct for q > n

Encoding : pA(x) =
∑t

j=1 Ãjx j−1 pB(x) =
∑t

j=1 B̃jx t−j

C(xi ) = pA(xi ) · pB(xi ) computed and communicated by the i th worker

Decoding : Polynomial interpolation, once 2t − 1 evaluations are received

Weighting : p̃A(x) =
∑t

j=1
√
w̃j · Ãjx j−1 p̃B(x) =

∑t
j=1
√
w̃j · B̃jx t−j

Theorem (Proposition 3.3)
Our recovery threshold drops from 2t − 1 to 2t̀ − 1 = 2(t/ρ)− 1.

3. Fahim et al., “On the Optimal Recovery Threshold of CMM”, Allerton 2017
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Experiments
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Experiments

Minimum Variance of Frobenius Error
Constructed A ∈ R260×9600,B ∈ R9600×280 with non-uniform {Πi}K

i=1
K = 280 ; τ = 20, with ‖A‖2F‖B‖2F = O(1011)
Considered error ‖AB − C̃ R̃‖2F and varying t
Ran the approximation 10 times for each t
Compared it against a uniformly sampling scheme
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Experiments

AWS Jobs with a GC Approach
Same set up, with N = 104, K = 500 ; τ = 20
Consider AWS times 4, with n = 500 and ρ = 20
For the same completion time :
I Unweighted : s = 19
I Weighted : s̀ = 399

Only needed 10% of the overall time, and had relative error 8.26× 10−7

4. Bartan et al., “Polar Coded Distributed Matrix Multiplication”, Allerton 2019
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Thank you for your attention !
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