Approximate Weighted CR Coded Matrix Multiplication J

fNeophytos Charalambides *Mert Pilanci  fAlfred Hero

TEECS Department University of Michigan, *EE Department Stanford University

June, 2021

,— [ 3
June 6-11, 202.
Convenﬁgrm

JApproximate Weighted CR Coded Matrix Multiplicatiol June, 2021 1/19



© Introduction and Motivation

JApproximate Weighted CR Coded Matrix Multiplicatiol June, 2021 2/19



Issues and Motivation

Introduction and Motivation

Machine Learning Today : Curse of Dimensionality
o Large Datasets — many samples
o Complex Datasets — large dimension

@ Problems become intractable

Use distributed methods
o Distribute smaller computation assignments

o Multiple servers complete various tasks

Drawbacks of Distributed Synchronous Computations
@ Requires all servers to respond — communication overhead
o What if stragglers are present ?

o Stragglers — servers with delays or non-responsive
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Coded Matrix Multiplication (CMM)
@ Speed up distributive computation — matrix multiplication

@ Mitigate stragglers

D ,
/ D, \Pr e

DO -0 X - &=

Multiplying A, B :
o Partition A, B and send information D; to the workers
o Workers compute ¢;(D;) and send it back
@ Main server recovers A- B
o Wiaits for f = n — s fastest workers (s stragglers, out of n workers)
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Our Motivation and Approaches

Previous Methods :
o Many different coding approaches :
» Polynomial, Short-dot, MatDot, MDS, Binary, Polar codes, etc.

o Consider exact recovery — high computations
o Few approximate schemes

o Approximate MM suffices in ML applications

Our Approach :

o Use outer-product for ¢;, and combine with weighting

(4]

Leverage CR approximate multiplication

(4]

Weighting results in further compression
o 1st approach : Use any gradient code to devise a Weighted-CMM
2nd approach : Utilize MatDot CMM

(]

June, 2021

5

/19



© Block CR-Multiplication

JApproximate Weighted CR Coded Matrix Multiplicatiol June, 2021 6/19



CR-Multiplication

o Consider A € REXN and B € RVxM

o Let AW = jth column of A, and By = j* row of B

(4]

N .
AB =", AVB;

(4]

Sample from { (AU, B(j))}jl.vzl with replacement, with probability :

pi o< AV 2 - 1Byl

o For r < N sampling trials, with index multiset S :

1 1 AW B
AB~—- | S —A0B, | =% — O
" \JesP jes VP VTP

We generalize this to sampling blocks

1. Drineas et al., “Fast MC Algorithms for Approximate Matrix Multiplication”, FOCS 2001
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Block CR-Multiplication
o Partition A and B into K = N/7 block pairs :
A=[A - A ad  B=[B] - B;]T
o A; e RE*" and B; e R™M  —  A;B; is a rank-7 outer product

o We consider t = r/7 sampling trials, with index multiset S (s.t. |S| < K)
~ 1 -~ ~
C= A/ Vs o A /yMs ] € RV
I - T
RZW[BEI/\/”& Bgr/\/”s;} e RN

@ Optimal sampling distribution that minimizes the variance of Y = CRis :

1Al l|Bill e

M=
I_ZIHA/HFHB/HF

fori=1,2,...,. K
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Main Result

Theorem (Theorem 2.1)

The estimator Y = CR is unbiased, while the sampling probabilities {N; 3K,
minimize Var(Y), and ||[AB — CR||%2 = O (||Al|#||B||%/t).

For convenience, we can define S € RV*r st. :
C=A-S and R=S"T-B — AB=~A(SS")B.

The matrix S is determined by S and {M;}X,.
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Weighted CR-Multiplication

Idea : Only consider one copy of sampled pairs, and weight them accordingly.

o Sample until t distinct blocks are drawn

o Foreach 1 € S, let w, = #{times ¢ is in S}
> This gives us the weight vector w € Nj*¥

o T =S8 NN the index set of S, i.e. || =t

o Z AU)BU) = Z w; - A(i)é(,-)
jes i€

o By appropriately reweighting, we have S,, s.t. CR = A(S.S])B

Theorem (Proposition 2.3)

The resulting approximations from the algorithms using S and S,,, are identical.

Benefit : Consider |w||; many sampled pairs, while only storing ||wl|o.

More succinct representation.
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Introduction and Motivation

Block CR-Multiplication

Weighted CR-Multiplication
@ Weighted CMM

Experiments
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Weighted CMM

o Construct CMM schemes which return weighted sum of outer products
> regardless of which workers respond, we will always have the same weighted
approximate result
> encoding B, decoding &

7 /DN’" ”m/

OD/:(

7%, 'Ai,ixi—ni : Bi) ~  0i(Di) = - A
@ F is the index set of the f responsive workers
@ We provide two approaches
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WCMM Schemes From Gradient Coding

@ The output of a gradient code is the sum of vectors? — the partial gradients
Condition : a; -B = 17 ; for all possible F

o Let X = [¢1(Dl) ¢t(Dt)}

@ Let W be the restriction of w to nonzero entries

Consider any GC (ar,B) :
o Encoding : B = B - diag(W) ® I,

o Decoding : L :=alL®l,

— 5}-(é-x):---:(W®|L)-x:§w,-¢,(p,)

Theorem (Proposition 3.2)

After compressing A, B by p > 1, we can now tolerate 5 = p(s + 1) — 1 stragglers.

2. Tandon et al., “Gradient Coding : Avoiding Stragglers in Distributed Learning”, ICML 2017
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WCMM Scheme From MatDot CMM

e MatDot 3 is a polynomial CMM which utilizes outer products

o Let xq, ..., x, € Fy distinct for g > n

e Encoding : pa(x) = Z;Zl Ajxi—1 pe(x) = ijl Bjxt—i

o C(x;) = pa(x;) - ps(x;) computed and communicated by the i*" worker

o Decoding : Polynomial interpolation, once 2t — 1 evaluations are received

Weighting : pa(x) =>_;_; /W A xI= Be(x) =21 VW B Xt

Theorem (Proposition 3.3)

Our recovery threshold drops from 2t — 1 to 2t — 1 =2(t/p) — 1.

3. Fahim et al., “On the Optimal Recovery Threshold of CMM", Allerton 2017
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Minimum Variance of Frobenius Error

Constructed A € R260%9600 B ¢ R9600x280 \yith non-uniform {M;}K
K =280 ~» 7 =20, with ||A||%]B||2 = O(10'!)

Considered error ||[AB — CR||% and varying t

Ran the approximation 10 times for each t

Compared it against a uniformly sampling scheme

Frobenius-norm Error

N

105 Frobenius Error vs Reduction Factor

-~ Weighted Scheme
 —= Uniform Sampling

777777777777777777

Reduction Factor p=N/(t7)
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AWS Jobs with a GC Approach

Same set up, with N = 10%, K =500 ~ 7 = 20
Consider AWS times*, with n = 500 and p = 20
@ For the same completion time :
> Unweighted : s =19
> Weighted : 5 = 399
Only needed 10% of the overall time, and had relative error 8.26 x 10~

e o

(4]

70 AWS times in increasing order, of 500 different jobs

Seconds

0 | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Worker indices

4. Bartan et al., “Polar Coded Distributed Matrix Multiplication”, Allerton 2019
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Thank you for your attention!
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