Contrastive Unsupervised Learning for Speech Emotion Recognition

- Mao Li², Bo Yang¹, Joshua Levy¹, Andreas Stolcke¹, Viktor Rozgic¹, Spyros Matsoukas¹, Constantinos Papayiannis¹, Daniel Bone¹, Chao Wang¹
 - Amazon Alexa¹ and University of Illinois at Chicago²

Motivation

- Modern speech systems are mainly designed for speech content technology to enable natural human-machine communication.
- Application scenarios of SER system:
 - voice assistant
 - human health assistant
 - chat-bots & social robot

understanding, while speech emotion recognition (SER) becomes a key

[Image credit: Patrick J. Kiger's blog]

Motivation

- Modern speech systems are mainly designed for speech content technology to enable natural human-machine communication.
- The deficiency of emotion annotated data is the bottleneck for development of SER system.
 - labeling is expensive
 - \bullet

understanding, while speech emotion recognition (SER) becomes a key

labeling emotion data is challenging due to annotator disagreements

Motivation

- Modern speech systems are mainly designed for speech content technology to enable natural human-machine communication.
- The deficiency of emotion annotated data is the bottleneck for development of SER system.
- Two solutions:
 - Transfer learning from a related speech task
 - Unsupervised representation learning

understanding, while speech emotion recognition (SER) becomes a key

Contrastive Predictive Coding (CPC)

- sequence of audio frames: $\{x_1, x_2, \ldots, x_n\}$
- non-linear encoder f
- frame-level representation: $z_i = f(x_i)$
- autoregressive model g
- contextual representation: $c_i = g(z_{< i})$

Contrastive Predictive Coding (CPC)

- frame-level representation: $z_i = f(x_i)$
- contextual representation: $c_i = g(z_{\leq i})$
- prediction function for a specific k: h_k
- predict future : $\hat{z}_{i+k} = h_k(c_i) = h_k(g(z_{\leq i}))$
- InfoNCE Loss:

$$\mathscr{L} = -\sum_{m=1}^{k} \left[\log \frac{\exp\left(\hat{z}_{i+m}^{\top} z_{i+m}\right)}{\exp\left(\hat{z}_{i+m}^{\top} z_{i+m}\right) + \sum_{i=1}^{N-1} \exp\left(\hat{z}_{i+m}^{\top} z_{i}\right)} \right]$$

Attention-based Emotion Recognizer

- Multi-head attention lacksquare
 - C is the output of CPC
 - W^{j}_{*}, W_{O} are trainable weights
 - H^{j} is attention score of a single head
 - h is number of heads, d_K is the dimension

$$H^{j} = \operatorname{softmax} \left(W_{Q}^{j} C \left(W_{K}^{j} C \right)^{\mathsf{T}} / \sqrt{d_{K}} \right)$$
$$U = \operatorname{Concat} \left(H^{1}, H^{2}, \dots, H^{n} \right) W_{Q}$$

Multi-head Attention

Attention-based Emotion Recognizer

- Utterance embedding u = [mean(U); std(U)]
- Concordance Correlation Coefficient (CCC) measures alignment of two random variables:

$$\operatorname{CCC}(X, Y) = \rho \frac{2\sigma_X \sigma_Y}{\sigma_X^2 + \sigma_Y^2 + (\mu_X - \mu_Y)^2}, \rho$$

- X: ground truth score; Y: predicted score
- Loss function:

$$\mathscr{L} = 1 - \alpha \mathbf{CCC}_{act} - \beta \mathbf{CCC}_{val} - (1 - \alpha - \beta \mathbf{CCC}_{val})$$

 $\frac{\partial \mathbf{r}}{\partial t} \frac{d(U)}{\partial t}$ CC) measures $\sigma = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$

<u>Datasets</u>

Dataset	Label
LibriSpeech	N/A
IEMOCAP	Primitive labels; Categorical labels
MSP-Podcast	Primitive labels; Categorical labels

Experimental Setups

preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast) \bullet

 \bullet

Experimental Setups

- preCPC: pre-trained CPC + supervised
- Sup: supervised only

Hypothesis:

 Representations learned by CPC are super to handcrafted features for speech emotion recognition task

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods	CCC avg	CCC act	CCC val	CCC dom
Sup	$.664 \pm .007$	$.638 \pm .017$	$.718 \pm .004$.635 ± .009
jointCPC	$.562 \pm .012$	$.549 \pm .032$	$.642 \pm .013$	$.491 \pm .016$
miniCPC	$.660 \pm .005$	$.673 \pm .028$	$.702 \pm .009$	$.606 \pm .019$
preCPC	$.731 \pm .003$	$.752 \pm .014$	$.752 \pm .009$.691 ± .009

 Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

	Methods	CCC avg	CCC act	CCC val	CCC dom
rior	Sup	$.458 \pm .005$	$.596 \pm .007$.266 ± .004	.501 ± .013
n	jointCPC	$.491 \pm .008$	$.628 \pm .006$	$.280 \pm .006$	$.568 \pm .007$
11	miniCPC	$.549 \pm .006$	$.688 \pm .009$	$.345 \pm .005$	$.615 \pm .011$
	preCPC	$.571 \pm .004$	$.706\pm.006$	$.377 \pm .008$.639 ± .012

Experimental Setups

preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast)

- Sup: supervised only (IEMOCAP/MSP-Podcast)
- miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast) lacksquare

Experimental Setups

- preCPC: pre-trained CPC + supervised
- Sup: supervised only
- miniCPC: pre-trained CPC + supervised

Hypothesis:

 Exposing the model to more diverse acoust conditions and speaker variations (LibriSpe is beneficial for learning robust features.

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods	CCC avg	CCC act	CCC val	CCC dom
Sup	$.664 \pm .007$	$.638 \pm .017$	$.718 \pm .004$	$.635 \pm .009$
jointCPC	$.562 \pm .012$	$.549 \pm .032$.642 ± .013	.491 ± .016
miniCPC	$.660 \pm .005$	$.673 \pm .028$	$.702 \pm .009$.606 ± .019
preCPC	$.731 \pm .003$	$.752 \pm .014$	$.752 \pm .009$.691 ± .009

 Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

	Methods	CCC avg	CCC act	CCC val	CCC dom
tic	Sup	$.458 \pm .005$	$.596 \pm .007$	$.266 \pm .004$.501 ± .013
ech)	jointCPC	$.491 \pm .008$	$.628 \pm .006$	$.280 \pm .006$	$.568 \pm .007$
	miniCPC	$.549 \pm .006$	$.688 \pm .009$	$.345 \pm .005$	$.615 \pm .01$
	preCPC	$.571 \pm .004$	$.706 \pm .006$	$.377 \pm .008$.639 ± .012

Experimental Setups

amazon alexa

- preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast)
- Sup: supervised only (IEMOCAP/MSP-Podcast)
- miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast)

jointCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast)

Experimental Setups

- preCPC: pre-trained CPC + supervised
- Sup: supervised only
- miniCPC: pre-trained CPC + supervised
- jointCPC: pre-trained CPC + supervised

Hypothesis:

 Unsupervised pre-training produces representations with better generalization which facilitate various downstream tasks

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods	CCC avg	CCC act	CCC val	CCC dom
Sup	$.664 \pm .007$.638 ± .017	$.718 \pm .004$.635 ± .009
jointCPC	$.562 \pm .012$	$.549 \pm .032$	$.642 \pm .013$	$.491 \pm .016$
miniCPC	$.660 \pm .005$	$.673 \pm .028$	$.702 \pm .009$.606 ± .019
preCPC	$.731 \pm .003$	$.752\pm.014$	$.752 \pm .009$.691 ± .009

 Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

Methods	CCC avg	CCC act	CCC val	CCC dom
Sup	$.458 \pm .005$.596 ± .007	.266 ± .004	.501 ± .013
jointCPC	$.491 \pm .008$	$.628 \pm .006$	$.280 \pm .006$	$.568 \pm .007$
miniCPC	$.549 \pm .006$	$.688 \pm .009$	$.345 \pm .005$	$.615 \pm .011$
preCPC	$.571 \pm .004$	$.706 \pm .006$	$.377 \pm .008$.639 ± .012

Representation Visualization:

t-SNE plot of representations that learned from CPC \bullet

Data points are well separated, even though trained without emotion labels

Conclusion

- emotion recognition task
- Obtained competitive performance on public benchmarks

Future work

recognition performance (e.g., replace Libri speech with TED data)

Conclusion & Future Work

• CPC can learn salient features from unlabeled speech corpora that benefits

Investigate the impact unsupervised representation learning data on emotion

You are very welcome to our poster session! Speech Emotion 3: Emotion Recognition-Representations, Data Augmentation Wednesday, 9 June, 15:30 - 16:15

Thank you!

