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Motivation

» Modern speech systems are mainly designed for speech content
understanding, while becomes a key
technology to enable natural human-machine communication.

* Application scenarios of SER system:
e VoIce assistant
e human health assistant

 chat-bots & social robot | =
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Motivation

 The deficiency of emotion annotated data is the bottleneck for
development of SER system.

* |abeling Is expensive

* |abeling emotion data is challenging due to annotator disagreements
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Motivation

e Modern speech systems are mainly designed for
, while becomes a key
technology to enable natural human-machine communication.

 The deficiency of emotion annotated data is the bottleneck for
development of SER system.

* [wo solutions:
* Transfer learning from a related speech task

* Unsupervised representation learning
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Proposed Method

Contrastive Predictive Coding (CPC)

» sequence of audio frames: {x;,X,,...,X,}
 non-linear encoder f (G2 G C; Civt  Ci2 )
T T T T T
» frame-level representation: z; = f(x;) ) —¢ L & —¢
T T T T T
_ ) {j—1 % it] .
» autoregressive model g x x x x x
Encode Encode Encode Encode Encode
» contextual representation: ¢; = g(z.;) e i e i —
Xi—2 Xi—1 A Xi+1 Xi+2
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Proposed Method

Contrastive Predictive Coding (CPC)

. frame-level representation: z; = f(x.)

» contextual representation: ¢; = g(z;)
» prediction function for a specific k: #,,

» predict future : Z;,, = I(c;) = h(g(z;))

e |[nfoNCE Loss:

P _ i log CXp (2;|:I—mzi+m)
m=1 CXPp (22-_|—mzi+m> + Zi\;_ll CXp (grl-mzl) |

amazonalexa
~—




Attention-based Emotion Recognizer

Proposed Method
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Multi-head attention

 Cis the output of CPC

. W/, W, are trainable weights

. H is attention score of a single head

K is number of heads, dy is the dimension

-~

\_

. . N\ T .
H/ = softmax (WJQC (Wic) 1 /dK) Wi C

U = Concat (Hl,Hz, ...,H”) W,
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Multi-head Attention
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Proposed Method

Attention-based Emotion Recognizer
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Utterance embedding u = [mean(U); std(U)]

Concordance Correlation Coefficient (CCC) measures
alignment of two random variables:
20,0 o
CCC(X,Y) = p . =—
0%+ 0f + (ux — py) Ox0Y

« X! ground truth score; Y: predicted score

Loss function:

¥ =1-aCCC,,— BCCC,, — (1 —a—BCCC,,,,

activation valence dominance
! ! !

Dense
Dro:aout
Dense L- RelLU
Dense L- RelLU

!
Concat[mea?( U),std(U)]

(%o Uiy U; Uip1 Uiy
!
Multi-head Attention
I 1

|
CC1—2 Ci—1 Ci Cit1 Ct+2)
! ! ! ! !
! ! ! ! !
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Datasets
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Dataset

LibriSpeech

IEMOCAP

MSP-Podcast

EXperiments

Label Duration

N/A 100 hours of audio

Primitive labels; 19 hours of audio

Primitive labels; 84 hours of audio

Usage

Unsupervised
pre-training

Model evaluation;
Visualization

Model evaluation



EXperiments

Experimental Setups

 preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast)

Raw audios > Pre-trained @ . g primitive
CPC %Lbes\ labels

* Sup: supervised only (IEMOCAP/MSP-Podcast) handcrafted V.S learned feature

LFBE
features

_primitive
labels
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EXperiments

Experimental Setups

preCPC: pre-trained CPC + supervised

Sup: supervised only

Hypothesis:
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Representations learned by CPC are superior
to handcrafted features for speech emotion
recognition task

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods  CCC 4, CCC CCC CCC 4om
Sup .664 007 .638 017 718 +£.004 .635 + .009
jointCPC 562 =012 549 +.032 .642 +.013 491 +.016
miniCPC  .660 =005 .673 +.028 .702 4+ 009 .606 + 019
preCPC 731 £.003 .752 +.014 7352 +.000 .691 + .009

Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

Methods  CCC 4, CCC CCC CCC 4om
Sup 458 £.005 596 +.007 .266 +.004 .501 + 013
jointCPC 491 =008 .628 =.006 .280 +.006 .568 + .007
miniCPC  .549 + 006 .688 +.009 .345 + 005 .615 4 o011
preCPC 571 +.004 .706 =.006 377 +.008 .639 + 012




EXperiments

Experimental Setups

 preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast)

Raw audios » Pre-trained
CPC

LibriSpeech: large-scale, independent with downstream task

* Sup: supervised only (IEMOCAP/MSP-Podcast)

learned primitive
> > >
features labels

« miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast)

Raw audios { Pre-trained
CPC

IEMOCAP/MSP-Podcast: small size, dataset for downstream task

_learned _primitive
features labels
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EXperiments

Experimental Setups

preCPC: pre-trained CPC + supervised
Sup: supervised only

MiniCPC: pre-trained CPC + supervised

Hypothesis:
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Exposing the model to more diverse acoustic

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods  CCC 4, CCC CCC CCC 4om
Sup .664 007 .638 017 718 £.004 .635 £ .009
jointCPC 562 =012 549 +.032 .642 +.013 .491 + 016
miniCPC  .660 =005 .673 £.028 .702 + 009 .606 + 019
preCPC 731 £.003 .752 +.014 7352 +.000 .691 + .009

Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

conditions and speaker variations (LibriSpeech) jointCPC

IS beneficial for learning robust features.

Methods  CCC 4, CCC CCC CCC 4om
Sup 458 005 .596 +£.007 .266 + 004 .501 + 013

491 008 628 =.006 280 +.006 .568 + .007

miniCPC 549 + 006 .688 +.000 .345 + 005 .615 + o011
preCPC 571 £.004 .706 =.006 377 +.008 .639 + 012




EXperiments

Experimental Setups

 preCPC: pre-trained CPC (LibriSpeech) + supervised (IEMOCAP/MSP-Podcast)
 Sup: supervised only ((EMOCAP/MSP-Podcast)

« miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast)

Raw audios » Pre-trained
CPC

freeze

* jointCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+ supervised (IEMOCAP/MSP-Podcast)

_learned _primitive
features labels

_learned _primitive
features labels

Raw audios >

trainable
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EXperiments

Experimental Setups

preCPC: pre-trained CPC + supervised
Sup: supervised only
MiniCPC: pre-trained CPC + supervised

jointCPC: pre-trained CPC + supervised

Hypothesis:
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Unsupervised pre-training produces
representations with better generalization
which facilitate various downstream tasks

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods  CCC 4, CCC CCC CCC 4om
Sup .664 007 .638 £.017 718 £.004 .635 + .009
jointCPC 562 012 549 +.032 .642 + 013 491 + 016
miniCPC  .660 £ 005 .673 +.028 .702 £ 000 .606 + 019
preCPC 731 =003  .752 £ .014 752 +.009 .691 + .000

Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

Methods  CCC 4, CCC CCC 4 CCC gom
Sup .458 £.005 .396 £.007 .266 £ 004 .501 + 013
jointCPC 491 +.008 .628 +=.006 .280 +.006 .568 + .007
miniCPC 549 + 006 .688 +.000 .345 + 005 .615 + o011
preCPC 571 £ .004 .706 =.006 377 £.008 .639 + 012




EXperiments

Representation Visualization:

 t-SNE plot of representations that learned from CPC
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Data points are well separated, even
though trained without emotion labels



Conclusion & Future Work

Conclusion

 CPC can learn salient features from unlabeled speech corpora that benefits
emotion recognition task

 Obtained competitive performance on public benchmarks

Future work

* Investigate the impact unsupervised representation learning data on emotion
recognition performance (e.g., replace Libri speech with TED data)

o Still to do: end-to-end modeling
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You are very welcome to our poster session!
Speech Emotion 3: Emotion Recognition-Representations, Data Augmentation
Wednesday, 9 June, 15:30 - 16:15

Thank you!

JUNE 5-1 2¢ 2
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