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Motivation
• Modern speech systems are mainly designed for speech content 

understanding, while speech emotion recognition (SER) becomes a key 
technology to enable natural human-machine communication.


• Application scenarios of SER system:


• voice assistant


• human health assistant


• chat-bots & social robot
[Image credit:  Patrick J. Kiger’s blog]



Motivation
• Modern speech systems are mainly designed for speech content 

understanding, while speech emotion recognition (SER) becomes a key 
technology to enable natural human-machine communication.


• The deficiency of emotion annotated data is the bottleneck for 
development of SER system.


• labeling is expensive


• labeling emotion data is challenging due to annotator disagreements



Motivation
• Modern speech systems are mainly designed for speech content 

understanding, while speech emotion recognition (SER) becomes a key 
technology to enable natural human-machine communication.


• The deficiency of emotion annotated data is the bottleneck for 
development of SER system.


• Two solutions:


• Transfer learning from a related speech task


• Unsupervised representation learning



Proposed Method
Contrastive Predictive Coding (CPC)


• sequence of audio frames: 


• non-linear encoder 


• frame-level representation: 


• autoregressive model 


• contextual representation: 

{x1, x2, . . . , xn}

f

zi = f(xi)

g

ci = g(z≤i)
Encoder Encoder Encoder Encoder Encoder

xi−2 xi−1 xi xi+1 xi+2

zi−2 zi−1 zi zi+1 zi+2

AR AR AR AR AR

ci−2 ci−1 ci ci+1 ci+2



Proposed Method
Contrastive Predictive Coding (CPC)


• frame-level representation: 


• contextual representation: 


• prediction function for a specific k: 


• predict future : 


• InfoNCE Loss:
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ci = g(z≤i)
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Proposed Method
Attention-based Emotion Recognizer


• Multi-head attention


• C is the output of CPC


•  are trainable weights


•  is attention score of a single head


•  is number of heads,  is the dimension
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Proposed Method
Attention-based Emotion Recognizer


• Utterance embedding 


• Concordance Correlation Coefficient (CCC) measures 
alignment of two random variables:


• X：ground truth score; Y: predicted score 


• Loss function:

u = [mean(U); std(U)]

CCC(X, Y) = ρ
2σXσY

σ2
X + σ2

Y + (μX − μY)2 , ρ =
σXY

σXσY

ℒ = 1 − αCCCact − βCCCval − (1 − α − β)CCCdom



Experiments
Datasets

Dataset Label Duration Usage

LibriSpeech N/A 100 hours of audio Unsupervised               
pre-training

IEMOCAP Primitive labels;

Categorical labels 12 hours of audio Model evaluation;


Visualization

MSP-Podcast Primitive labels;

Categorical labels 84 hours of audio Model evaluation



Experiments
Experimental Setups


• preCPC: pre-trained CPC (LibriSpeech) +  supervised (IEMOCAP/MSP-Podcast)


• Sup: supervised only (IEMOCAP/MSP-Podcast)

Pre-trained 
CPC

Attention-based 
emotion recognizerRaw audios learned


features
primitive


labels

Attention-based 
emotion recognizer

LFBE

features

primitive

labels

handcrafted V.S learned feature



Experiments
Experimental Setups


• preCPC: pre-trained CPC +  supervised


• Sup: supervised only


Hypothesis:


• Representations learned by CPC are superior 
to handcrafted features for speech emotion 
recognition task



Experiments
Experimental Setups


• preCPC: pre-trained CPC (LibriSpeech) +  supervised (IEMOCAP/MSP-Podcast)


• Sup: supervised only (IEMOCAP/MSP-Podcast)


• miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+  supervised (IEMOCAP/MSP-Podcast)

Pre-trained 
CPC

Attention-based 
emotion recognizerRaw audios learned


features
primitive


labels

Pre-trained 
CPC

Attention-based 
emotion recognizerRaw audios learned


features
primitive


labels

LibriSpeech: large-scale, independent with downstream task 

IEMOCAP/MSP-Podcast: small size, dataset for downstream task



Experiments
Experimental Setups


• preCPC: pre-trained CPC +  supervised


• Sup: supervised only


• miniCPC: pre-trained CPC +  supervised


Hypothesis:


• Exposing the model to more diverse acoustic 
conditions and speaker variations (LibriSpeech) 
is beneficial for learning robust features.



Experiments
Experimental Setups


• preCPC: pre-trained CPC (LibriSpeech) +  supervised (IEMOCAP/MSP-Podcast)


• Sup: supervised only (IEMOCAP/MSP-Podcast)


• miniCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+  supervised (IEMOCAP/MSP-Podcast)


• jointCPC: pre-trained CPC (IEMOCAP/MSP-Podcast)+  supervised (IEMOCAP/MSP-Podcast)

Pre-trained 
CPC

Attention-based 
emotion recognizerRaw audios learned


features
primitive


labels

CPC Attention-based 
emotion recognizerRaw audios learned


features
primitive


labels

freeze

trainable



Experiments
Experimental Setups


• preCPC: pre-trained CPC +  supervised


• Sup: supervised only


• miniCPC: pre-trained CPC +  supervised


• jointCPC: pre-trained CPC +  supervised


Hypothesis:


• Unsupervised pre-training produces 
representations with better generalization 
which facilitate various downstream tasks



Experiments
Representation Visualization:


• t-SNE plot of representations that learned from CPC

Data points are well separated, even 
though trained without emotion labels



Conclusion & Future Work
Conclusion


• CPC can learn salient features from unlabeled speech corpora that benefits 
emotion recognition task


• Obtained competitive performance on public benchmarks


Future work


• Investigate the impact unsupervised representation learning data on emotion 
recognition performance (e.g., replace Libri speech with TED data)


• Still to do: end-to-end modeling



Thank you!

You are very welcome to our poster session! 
Speech Emotion 3: Emotion Recognition-Representations, Data Augmentation


Wednesday, 9 June, 15:30 - 16:15


