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previously,

E2E models outperform conventional models in:
e quality (i.e. WER) [
e endpointer latency
e but suffer from high

this work,

we present a better quality and latency tradeoff for
streaming ASR by introducing:

e Conformer Encoder!: for better quality

e Cascaded Encoders!®: for better quality

e FastEmit!?: for lower latency
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Quality Improvements



Conformer Encoder

e We replace the encoder LSTM layers with Conformer !

e Changes to the existing Conformer:
o Self-attention, convolution and normalization layers from full context — left context only for
streaming applications;

o Full context self-attentnion — local self-attention for better long-form generalization;

o Batch normalization — group normalization®® for multi-domain training data;

o Relative positional encoding — reusing convolution for implicit positional information
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Two-pass using Cascaded Encoder

e Two-pass models:
o Fast 1st pass: sacrifice quality for better latency;
o High quality 2nd pass: make up for the quality degradation in 1st pass.

e Conventional RNN-T + LAS!!:

o Rescoring limits the 2nd pass capability;
o Attention models do poorly on long-form data

e (Cascaded Encoders Two-pass model:
o Non-causal encoder layers — bringing in the full-context aspects of LAS for better quality;

o  RNN-T decoder with beam search for 2nd pass;
o  Sharing the RNN-T decoder between the two passes — smaller model size to fit on devices.

[22]



Cascaded Encoders
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Latency Improvements



Latency Metrics

e Endpointer Latency (EP)
o Definition: the time difference between when the user finishes speaking and when the
system predicts the end of query (EOQ).
o Measures: median (EP50) and 90th percentile (EP90) latency.

e Prefetch Latency (PF)
o Definition: the time difference between when the first correct prefetch is trigged and when
the user finishes speaking.
o Measures: PF50 and PF90, together with the prefetching rate (PFR).

e Partial Latency (PR)

o Definition: the time difference between when the first correct partial hypothesis is
generated by the model and when the user finishes speaking.
o Measures: PR50 and PR%0.



Latency Metrics
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e Partial latency is inherent to the model, while prefetch and endpointer
latency depends on additional decision logic.
e Partial latency is the lower bound for prefetch latency.
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Techniques

e Endpointer Latency (EP)
o External EP
o RNN-T EP: predicting EOQ jointly with ASR!?!
e Prefetch Latency (PF)
o Silence based prefetching:
m using voice activity detector (VAD);
m triggers a prefetch after observing a fixed interval of silence.
o E2E Prefetching®”:
m utilizing the EOQ prediction of the RNN-T EP model;
m  when EOQ probability is above a certain threshold, it declares a prefetch decision.

e Partial Latency (PR)

o Constrained Aligments!?®’
o  FastEmitl!



Constrained Alignment

Adds time constraints to RNN-T predictions.
It penalizes token predictions that are early or late.
In practice, we only constrain the start and end tokens of each word.
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FastEmit

e Normally, emitting a blank or non-blank token are treated equally in RNN-T.

e Instreaming ASR, however, emitting the blank token (i.e. delaying outputs)
can lead to higher latency.

e We hence modify the RNN-T loss to suppress blank tokens.

e I[tisimplemented by adding a regularization term in the original RNN-T
formulations:

(1 4 AfasEmit) B(t, u + 1) if & = yut1

Bt+1,u)ifk =&

0 otherwise.

oL _ a(tu)
OPr(k|t,u)  Pr(y*|x)

e Intuitively, it applies a "higher learning rate" to the prediction of non-blank
token during back-propagation.



Experiments



Experiment Setup

e Dataset:
o Human transcribed audio-text pairs from a variety of domains: Search, Farfield, Telephony,
YouTubel"
e F[eatures:

o 128D Log-mel Filterbanks together with a 1-hot vector of the domain-id to help with
modeling domain variations.
e Models:
o Causal Encoder: 17 causal (left-context only) Conformer layers;
o Prediction Network: 2 layer LSTM.
o Joint Network: a single feed-forward layer.
o Non-causal Encoder: 2 layer Conformer layers with additional 5.04s right context.
e Metrics:
o  Quality: Word error rate (WER)
o Latency: EP50, EP90, PR50, PR9O, PF50, PF90, PFR



Quality Exps

e B1:LSTM encoder baseline system.
e CO: Simply limit Conformer!* to use
only-left contexts:

o

Different domains tend to have
different length distribution, leading
to biased batch normalization stats.
Removing bucketing resolves the
quality degradation.

However, no bucketing slows down
training.

Model | Training Speed | WER
Exp. .
Size M) (examples/sec.) (%)
B1 LSTM w MWER [1] 122 3100 6.0
CO0 w/o MWER [4] 141 3970 6.8
C0 No bucketing, w/o MWER 141 2450 5.8
C1 w/o MWER 141 3550 5.9
C2 w/o MWER 137 4200 5.8
w MWER 5.6




Quality Exps

e C1: With group normalization, we
maintain similar WER but less speed
regression.

e C2: Swapping the order of

convolution and self-attention :
o further improves the training speed
o with MWER, it yields a 7% relative
WER reduction and 35% speedup
over LSTM.

Model | Training Speed | WER
Exp. .
Size M) (examples/sec.) (%)
B1 LSTM w MWER [1] 122 3100 6.0
CO0 w/o MWER [4] 141 3970 6.8
C0 No bucketing, w/o MWER 141 2450 5.8
C1 w/o MWER 141 3550 5.9
C2 w/o MWER 137 4200 5.8
w MWER 5.6




Latency Exps

Ex WER | Endpointer Latency Partial Latency Prefetch Latency

P- (%) EP50 (ms)  EP90(ms) | PR50(ms) PR90(ms) | PF50(ms) PF90(ms) PFR
B0 Conventional [1] 6.6 460 870 -150 60 90 190 1.48
B1 LSTM RNN-T [ 1] 6.0 310 710 170 310 170 320 1.80

e BO: Hybrid AM + LM Conventional baseline system.
e B1: Existing LSTM RNN-T

o Good quality and EP latency

o much worse PR and PF latencies.



Latency Exps

Ex WER | Endpointer Latency Partial Latency Prefetch Latency

P- (%) EP50 (ms)  EP90(ms) | PRS0 (ms) PR90(ms) | PF50(ms) PF90(ms) PFR
B0 Conventional [1] 6.6 460 870 -150 60 90 190 1.48
B1 LSTM RNN-T [/] 6.0 310 710 170 310 170 320 1.80
B2 B1 + Constrained Alignment 6.9 230 560 -40 80 100 200 1.29
B3 B1 + FastEmit 6.2 330 650 -10 180 80 210 1.47

e B2: Constrained alignment reduces latency but hurts quality
e B3: FastEmit reduces latency with less quality regression



Latency Exps

Ex WER | Endpointer Latency Partial Latency Prefetch Latency

P- (%) EP50 (ms)  EP90 (ms) | PR50(ms) PR90(ms) | PF50(ms) PF90(ms) PFR
B0 Conventional [1] 6.6 460 870 -150 60 90 190 1.48
B1 LSTM RNN-T[1] 6.0 310 710 170 310 170 320 1.80
C2 Conformer RNN-T 5.6 260 590 150 290 220 350 1.65
C3 C2 + FastEmit 5.8 290 660 -110 90 70 210 1.29
C4 C3 + E2E Prefetch 6.0 290 660 -110 90 -50 110 1.86

e C2: Switching to Conformer encoder improves quality.
e (C3: FastEmit improves partial latency.
C4: E2E Prefetch reduces the gap between partial latency and prefetch latency.

C4 gives an E2E system with the same quality as the LSTM RNN-T but much better
latencies.



Latency Exps

Ex WER | Endpointer Latency Partial Latency Prefetch Latency

P- (%) EP50 (ms)  EP90(ms) | PRS0 (ms) PR90(ms) | PF50(ms) PF90(ms) PFR
B0 Conventional [1] 6.6 460 870 -150 60 90 190 1.48
B1 LSTM RNN-T [1] 6.0 310 710 170 310 170 320 1.80
C4 C3 + E2E Prefetch 6.0 290 660 -110 90 -50 110 1.86
T1 Two-pass LAS Rescoring | 5.3 | 290 660 ‘ -100 140 | 80 210 1.30
T2 Single-pass Causal 6.0 290 660 -90 120 -20 130 1.90
T2 Two-pass 54 290 660 -80 140 0 140 1.84
T2 Single-pass Non-causal 4.8 - - - - - - -

e T1:Two-pass with LAS rescoring further improves quality.
e T2:Two-pass with Cascaded encoders:
o maintains 1st pass latency gains;
o reaches similar quality as T1;
o even better quality for non-streaming applications with the same model.



Conclusions

e Confomer encoder brings further quality gains.

e FastEmit, a simple yet effective latency technique, brings E2E
latency close to classical models.

e Two-pass model using Cascaded Encoders maintains 1st pass
latency while further reducing WERs.

With these improvements, we can build a system that is better
and faster than the previous best E2E system and surpassing the
conventional model in quality and all latency metrics.
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