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Introduction

• Acoustic	Scene	Classification	(ASC)
• To	identify	real-life	sounds	into	environment	classes, such	as	metro	station,	street	traffic,	or	public	

square.
• State-of-the-art	performance	always	comes	from	CNN	based	end-to-end	system.

• Input	features	à CNN	classifier	à output	scene	class

• Device	robustness	issue
• In	real	world	application,		ASC	system	should	be	robust	to	different	recording	devices.
• In	DCASE	2020[1],	task	1a	focus	on	the	device	robustness	issue	of	ASC.

• In	this	work,	we	propose	a	novel	Two-Stage	ASC	System	to	leverage	the	device	robustness	issue	of	ASC.

[1]	T.	Heittola,	A.	Mesaros,	and	T.	Virtanen,	“Acoustic	scene	clas-sification in	dcase 2020	challenge:	generalization	across	de-vices	and	low	complexity	solutions,”	in	DCASE2020,	2020.



Two-Stage	Classification	Procedure

• 3-class	classifier:	
• Classifies	an	input	scene	audio	into	one	

of	three	broad	classes:	in-door,	out-door,	
and	transportation.

• We	expect	it	to	enhance	the	classification	
process	and	leverage	the	overfitting	issue	
of	10-class	classifier.

• 10-class	classifier:
• The	main	classifier.
• Assigns	a	given	input	audio	clip	into	one	

of	ten	target	acoustic	scene	classes

• Score	fusion:
The	proposed	two-stage	ASC	system



ASC	System	Design

• 3	different	CNN	models	are	investigated	in	our	work
• Resnet:	A	duel	path	resnet model,	where	each	input	feature	map	is	divided	into	two	sub-feature	

mapping	along	the	frequency	dimension.
• FCNN:	A	fully	convolutional	neural	networks built	with	9	stacked	convolutional	layers	with	small-size	

kernel.
• fsFCNN:	An	extension	of	FCNN	model,	which	mainly	has	2	more	convolutional	layers	and	reduces	

max-pooling	size	in	the	frequency	axis.

• 9	different	data	augmentation	strategies	are	investigated	in	our	work
• No	generating	extra	data:

• Mixup,	Random	cropping,	SpecAugment.
• Generating	extra	data:

• Spectrum	correction:	Generate	new	features	by	a	correction	coefficient.
• Reverberation	with	DRC:	Add	reverberation	by	RIR,	and	apply	dynamic	range	compression.
• Pitch	shift:	Randomly	shift	the	pitch	of	each	audio	clip	based	on	the	uniform	distribution.
• Speed	change:		Randomly	change	the	audio	speed	based	on	the	uniform	distribution.
• Random	noise:	Add	random	Gaussian	noise.	
• Mix	audios:		Randomly	mix	two	audios	from	the	same	scene	class.



• Data	set:	DCASE	2020	Task1a	development	data	set.	
• ~14K	10-second	acoustic	scene	training	audios	recorded	by	6	different	devices.

• Device	A	accounts	for	~75%,	B,	C,	s1-s3	account	for	5%,	respectively.
• The	goal	is	to	get	good	performance	on	9	different	test	devices:

• Real	source	devices:	device	A.
• Real	target	devices:	device	B	&	C.
• Simulated	seen	devices:	device	s1-s3.
• Simulated	unseen	devices:	device	s4-s6.

• Data	processing:
• 128-D	log-mel filter	bank	(LMFB)	features	are	used.
• We	perform	utterance-level	scaling	operation	to	scale	LMFB	features	into	[0,1]

Experimental	Setup



• 3-class	classification	results

• Evaluation	of	different	data	augmentation	strategies	(mix-up	and	random	cropping	are	always	used)
• ‘sa’	indicates	specAugment.	
• ‘sc’	indicates	spectrum	correction.	
• ‘r’	indicates	reverberation	with	DRC.	
• ‘aug’	indicates	another	four	augmentation	methods,	including	pitch	shift,	speed	change,	random	

noise	and	mix	audios.

Experimental	Results



• Overall	results	of	our	proposed	system

• CNN	classifiers	show	good	robustness	on	different	test	devices.	Ensemble	can	further	improve	the	performance.
• Two-stage	systems	can	boost	the	performance	a	lot.	2.5%	to	3.2%	absolute	accuracy	gains	are	obtained.
• The	best	system,	2-stage	ensemble	can	leverage	the	gap	between	simulated	seen	data	and	simulated	unseen	

data	a	lot.	
• The	results	on	different	devices	confirm	the	effectiveness	of	the	proposed	two-stage	system	with	respect	to	

improving	device	robustness.	

Experimental	Results	(cont’d)



• CAM[1] analysis	of	ASC	systems:	example	1	

spectrum	

3-class	CAM

10-class	CAM

• Utterance:	metro_station-vienna-87-2389-a	
• Class:	metro	station
• Brake	and	horn	sound	starts	from	0s	to	

around	8s.	After	5s,	only	reverberation	
remains.	

• Class	Probability:
• 3-class:	0.626,	indoor
• 10-class:	0.707,	metro_station
• 2-stage:	0.850	metro_station

Neural	Saliency	Analysis

[1]	B.	Zhou,	A.	Khosla,	Lapedriza.	A.,	A.	Oliva,	and	A.	Tor-ralba,	“Learning	Deep	Features	for	Discriminative	Localiza-tion.,”CVPR,	2016.



• CAM	analysis	of	ASC	systems:	example	2

spectrum	

3-class	CAM

10-class	CAM

• Utterance:bus-prague-1102-42431-a
• Class:	bus
• brake	sound	starts	from	around	2s	and	

stops	at	around	5s,	human	talks	starts	
from	around	5s

• Class	Probability:
• 3-class:	0.783,	transportation
• 10-class:	0.794,	bus
• 2-stage:	0.919	bus

Neural	Saliency	Analysis	(cont’d)



Conclusions

• We	propose	a	novel	two-stage	ASC	framework	based	on	CNNs	to	leverage	the	device	robustness	issue.	A	
general	3-class	classifier	and	a	specific	10-class	classifier	are	combined	through	score	fusion.

• Three	different	CNN	models	and	9	different	data	augmentation	strategies	are	investigated	to	improve	device	
robustness.

• Experiments	on	the	DCASE	2020	task1a	development	set	show	the	effectiveness	of	our	solution.	Specifically,	
our	best	system,	a	two-stage	fusion	of	a	CNN-based	ensemble,	obtains	a	state-of-the-art	81.9%	average	ASC	
accuracy.

• We	perform	CAM-based	neural	saliency	analysis	to	demonstrate that	CNNs	pay	particular	attention	to	audio	
segments	strictly	related	acoustic	events.
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