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Figure 1: A visual representation of the proposed DeepTalk-based speech encoding and speech synthesis framework

Automatic speaker recognition algorithms typically characterize speech audio using short-term
spectral features that encode the physiological and anatomical aspects of speech production. Such
algorithms do not fully capitalize on speaker-dependent characteristics present in behavioral
speech features.

In this work, we:
1) Develop a vocal-style encoder called DeepTalk for capturing speaker-dependent behavioral

speech characteristics
2) Combine DeepTalk with physiological speech feature-based speaker recognition methods to

improve speaker recognition performance in challenging audio conditions
3) Integrate DeepTalk into a Text-To-Speech (TTS) synthesizer to generate synthetic speech audios

for evaluating the fidelity of DeepTalk-based vocal style features

In this work, we develop a speech encoder called DeepTalk, to capture behavioral speech
characteristics directly from raw speech audio without any word- or frame-level annotations. The
DeepTalk architecture (Fig. 1) consists of separate speech encoding and speech synthesis
branches.

• Speech Encoding: The speech encoding branch feeds a raw input audio into a DeepVOX[1]
network to extract short-term speech features, called DeepVOX features. DeepVOX is a 1D-CNN
based speech filterbank that extracts speaker-dependent speech features directly from raw
speech audio. DeepVOX features are then fed to a Global Style Token (GST)-based[2] prosody
embedding network to extract the DeepTalk embedding.

• Speech Synthesis: The speech synthesis branch feeds the DeepTalk embedding and a reference
text into a Tacotron2-based synthesizer[3] to generate a Mel spectrogram, which is then
converted to the synthetic speech waveform using a WaveRNN-based neural vocoder[4]

Experimental results show the efficacy of the DeepTalk embedding for performing both speaker
recognition and speech synthesis, as compared to baseline methods.

VoxCeleb2 [5]

Number of Speakers: 
5,994 in training set
118 in test set

Type of Speech Data:
Interview Speech

NIST SRE 2008 [6]

Number of Speakers: 
1336 in training set
200 in test set

Type of Speech Data:
Phone call and 
Interview Speech

NOISEX-92 [7]

Noise dataset:
Airplane (F16) Noise
Babble Noise

Figure 2: The above datasets were used for performing the experiments in this work

Following experiments are performed in this work:

• xVector-PLDA[8], i-vector-PLDA [9], and 1D-Triplet-CNN [10]
methods were used to establish baseline physiological speaker
verification performance.

• DeepTalk is used to perform vocal-style feature-based speaker
verification experiments

• The DeepTalk and baseline methods are combined at a weighted
score level to evaluate the speaker recognition benefits of combining
behavioral and physiological speech features.
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Summary

• Behavioral speech features extracted by DeepTalk method outperform majority of physiological speech feature-
based speaker verification methods

• Score-level fusion of DeepTalk with physiological speech feature-based speaker recognition methods further 
improve the speaker verification performance in majority of the experiments across all the methods

• DeepTalk-synthesized speech is judged near-identical to real speech by SOTA speaker recognition methods, 
demonstrating DeepTalk’s efficacy at vocal style modeling

Future Work
• We plan to extend our work towards combining physiological and behavioral speech characteristics at feature-level in a 

single end-to-end network  architecture for further improving the speaker recognition performance.
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Train / Test Data:

P1: VoxCeleb2 

P2: NIST SRE 2008

P3: NIST SRE 2008 
+ Babble

P4: NIST SRE 2008 
+ F16

Score level fusion of DeepTalk with:
1. 1D-Triplet-CNN(MFCC-LPC) improves TMR@FMR=1% by 19.43%
2. iVector-PLDA improves TMR@FMR=1% by 24.67%
3. xVector-PLDA improves TMR@FMR=1% by 24.24%

Speaker Recognition Results Speech Synthesis Results

• t-SNE plots of the speech 
embeddings of real and 
synthetic voice samples of 
four different speakers, 
extracted by three 
different speech encoders.

• DeepTalk's synthetic 
speech is embedded much 
closer to the real speech by 
all the speech encoders, as 
compared to the baseline 
synthetic speech.
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