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Introduction Datasets and Experlments

Automatic speaker recognition algorithms typically characterize speech audio using short-term Following experiments are performed in this work: VoxCeleb2 [5] NIST SRE 2008 [6]
spectral features that encode the physiological and anatomical aspects of speech production. Such

: T . : : Number of Speakers: Number of Speakers:
algorithms do not fully capitalize on speaker-dependent characteristics present in behavioral » xVector-PLDA[8], i-vector-PLDA [9], and 1D-Triplet-CNN [10] | 5,994 in training set 1336 in training set
speech features. methods were used to establish baseline physiological speaker | 118intestset 200 in test set

verification performance.

i tis work, we: e ofspeechiat: || oot speeh
1) Develop a vocal-style encoder called DeepTalk for capturing speaker-dependent behavioral » DeepTalk is used to perform vocal-style feature-based speaker | ) | Interview Speech
speech characteristics verification experiments NOISEX92 (7
2) Combine DeepTalk with physiological speech feature-based speaker recognition methods to
improve speaker recognition performance in challenging audio conditions * The DeepTalk and baseline methods are combined at a weighted Noise dataset:
3) Integrate DeepTalk into a Text-To-Speech (TTS) synthesizer to generate synthetic speech audios score level to evaluate the speaker recognition benefits of combining Airplane (F16) Noise
for evaluating the fidelity of DeepTalk-based vocal style features behavioral and physiological speech features. _Babble Noise )

Figure 2: The above datasets were used for performing the experiments in this work

Results and Analysis
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Figure 1: A visual representation of the proposed DeepTalk-based speech encoding and speech synthesis framework DeepTalk : all the speech encoders. as i £, ® speaker 4 - Female
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:{Score level fusion of DeepTalk with: i i compared to the baseline i ’ . @ FRoalvoice
. . ' 1. 1D-Triplet-CNN(MFCC-LPC) improves TMR@FMR=1% by 19.43% i synthetic speech. : L Svnt:etfc Voice (Deer:jalk)
In this work, we develop a speech encoder called DeepTalk, to capture behavioral speech | 2. iVector-PLDA improves TMR@FMR=1% by 24.67% | L J R S B S L
characteristics directly from raw speech audio without any word- or frame-level annotations. The L }__"_Y?C_t_"_f_fEP_A_ improves TMR@FMR=1% by 24.24% L (c) DeepTalk Legend y
DeepTalk architecture (Fig. 1) consists of separate speech encoding and speech synthesis 4 )

Summary

* Behavioral speech features extracted by DeepTalk method outperform majority of physiological speech feature-
based speaker verification methods

* Score-level fusion of DeepTalk with physiological speech feature-based speaker recognition methods further
improve the speaker verification performance in majority of the experiments across all the methods

* DeepTalk-synthesized speech is judged near-identical to real speech by SOTA speaker recognition methods,

demonstrating DeepTalk’s efficacy at vocal style modeling
Future Work

, . .  We plan to extend our work towards combining physiological and behavioral speech characteristics at feature-level in a
* Speech Synthesis: The speech synthesis branch feeds the DeepTalk embedding and a reference single end-to-end network architecture for further improving the speaker recognition performance.

text into a Tacotron2-based synthesizer[3] to generate a Mel spectrogram, which is then \- J

converted to the synthetic speech waveform using a WaveRNN-based neural vocoder[4] Acknowledgement
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branches.

 Speech Encoding: The speech encoding branch feeds a raw input audio into a DeepVOX|[1]
network to extract short-term speech features, called DeepVOX features. DeepVOX is a 1D-CNN
based speech filterbank that extracts speaker-dependent speech features directly from raw
speech audio. DeepVOX features are then fed to a Global Style Token (GST)-based[2] prosody
embedding network to extract the DeepTalk embedding.

Experimental results show the efficacy of the DeepTalk embedding for performing both speaker
recognition and speech synthesis, as compared to baseline methods.




