reDAT: Accent-Invariant Representation for End-to-End ASR by Domain Adversarial Training with Relabeling

Hu Hu^{*}, Xuesong Yang[†], Zeynab Raeesy[†], Jinxi Guo[†], Gokce Keskin[†], Harish Arsikere[†], Ariya Rastrow[†], Andreas Stolcke[†], Roland Maas[†]

> *Georgia Institute of Technology [†]Amazon Alexa

> > ICASSP 2021

- Introduction
- Domain adversarial training (DAT)
- Theoretical Guarantee of Accent-Invariance for DAT
- reDAT: DAT with relabeling
 - Relabeling with unsupervised clustering
 - Relabeling with soft labels
- Experiments
 - Experimental setup
 - Experimental results and nativity analysis
- Conclusions

Introduction

- Accent mismatching is a critical problem for ASR
 - Commercial speech applications typically only model varieties associated with major countries.
 - In real-world smart speaker devices, users set up their language preferences regardless of whether they are native speakers or not.
 - Therefore, ASR systems trained mainly on only native speech risk degradation when faced with non-native speech.

Previous works

- Accent-specific approaches: i-vectors, accent IDs, accent embeddings, ...
- Accent-invariant approaches: data pooling, adversarial training, ...

• Our goals

- Build an accent-invariant end-to-end ASR model robust to many English accents (e.g. en-US/en-GB/en-IN/en-AU/...).
- Improve the recognition accuracy on native, non-native, and even unseen accents.

Speech input from different accents

Introduction (cont'd)

- We aim to advance accent-invariant modeling with RNN-T based on the domain adversarial training (DAT).
- Our contributions:
 - We lay out the theory behind DAT and we provide, for the first time, a theoretical guarantee that DAT learns accent-invariant representations.
 - We prove that performing the gradient reversal in DAT is equivalent to minimizing the Jensen-Shannon divergence.
 - Motivated by the proof of equivalence, we introduce **reDAT**, a novel technique based on DAT
 - Results show significant improvements over strong baselines.

RNN-T model

Domain Adversarial Training

DAT framework

- Domain adversarial training^[1] (DAT) is the basic framework of gradient reversal based methods.
- It uses an extra Accent Classifier to learn the accent invariant features.
- With the negative gradient back-propagated from accent classifier, Generator tends to be unable to distinguish the accent classes. This pushes the output embedding z to be invariant to accent.
- Model outputs:
 - **RNN-T** output -- positive gradient.
 - Accent Classifier output -- negative gradient.

- **Training Stage:** the whole network is updated based on the following gradient decent rules:
 - Generator:

$$\theta_G \leftarrow \theta_G - \alpha \left(\frac{\partial \mathcal{L}_R}{\partial \theta_G} - \lambda \frac{\partial \mathcal{L}_C}{\partial \theta_G} \right)$$

• RNN-T:

$$\theta_C \leftarrow \theta_C - \alpha \frac{\partial \mathcal{L}_C}{\theta_C}$$

• Accent Classifier:

$$\theta_R \leftarrow \theta_R - \alpha \frac{\partial \mathcal{L}_R}{\theta_R}$$

• The accent IDs are needed during training, but not during inference.

Theoretical Guarantee of Accent-Invariance for DAT

- Claim: Performing gradient reversal in DAT is equivalent to minimizing the Jensen-• Shannon divergence (JSD) between output distributions from different accents.
- Proof:
 - For accent classifier C, we can find optimal C^* by minimizing the CE loss,

$$C^* = \underset{\theta_C}{\operatorname{arg\,max}} \sum_{i}^{N} E_{z \sim P_{Gi}(z)} \log C_i(z)$$

Softmax is applied s.t. the following constraint holds, ٠

$$\sum_{i=1}^{N} C_i(z) = 1, \quad 0 < C_i(z) < 1$$

 C^* is convex since 2nd-order derivative of $C_i(z)$ is negative. We can find the only • solution by linear programing,

$$C_i^*(z) = rac{P_{G_i}}{\sum_i^N P_{G_i}}$$

For generator G, we can find optimal G^* if we only consider CE loss onto G, ٠

$$G^* = \underset{\theta_G}{\operatorname{arg\,max}} \left(\underset{\theta_C}{\operatorname{arg\,max}} \sum_{i}^{N} E_{x \sim P_{data}(x)} \log C_i \left(G(x) \right) \right)$$

DAT framework

Hence, for *G*, it can be deduced to $G^* = \underset{G}{\operatorname{arg\,min}} \left(-N \log N + JSD\left(P_{G_1}, P_{G_2}, \dots, P_{G_N}\right)\right)$ ٠

reDAT: DAT with Relabeling

• From the theory proof:

- Gradient reversal is equivalent to minimize the JSD between output distributions from different classes.
- The global minima is achieved iff. $P_{G_1}=P_{G_2}=\ldots=P_{G_N}$, which indicates that the embeddings z are accent-invariant.
- We should get better results by predefining more detailed acoustic information, i.e., more accurate accent labels.

• Proposed relabeling approaches:

- Perform unsupervised clustering to get more accurate accent labels.
- Use soft labels for gradient reversal instead of hard labels.

We should get better results by predefining more fine-grained accent labels **motivated** by the proof of equivalence.

Procedure:

<Step 1>: Train an accent classifier in a supervised way on our en-X datasets.

<Step 2>: Generate utterance-level accent embeddings by the accent classifier.

<Step 3>: Perform unsupervised clustering on accent embedding. We use K-means.

<Step 4>: Perform DAT on new labels. The number of new labels is equal to the number of clusters.

Relabeling with Unsupervised Clustering (cont'd)

• Visualization of unsupervised clustering on generated embedding (<Step 3>) by t-SNE:

Target accent distribution (en-US, en-GB, en-IN) K-means clustering distribution (8 classes)

- 3 classes blur accent boundaries. Many utterances are in the overlapping regions where classes are hard to discriminate.
- The fine-grained 8 classes are capable of capturing more detailed and non-native English accents.

Compared with one-hot labels, soft labels are expected to do a better job of representing accents compared to onehot vector owing to the fuzziness of accent boundaries.

Procedure :

<Step 1>: Train an accent classifier in a supervised way on our en-X datasets.

<Step 2>: Generate soft labels for each utterance by the accent classifier.

<Step 3>: Finally perform DAT on new generated soft labels.

- Although one-hot labels are replaced by soft labels, the theory guarantee still holds. It's still equivalent to minimize the JSD, but between different distributions.
 - Optimal C: • One-hot labels: $C^* = \underset{\theta_C}{\operatorname{arg max}} \sum_{i}^{N} E_{z \sim P_{G_i}(z)} \log C_i(z)$ • Soft labels: $C^* = \underset{\theta_C}{\operatorname{arg max}} E_{z \sim P_G(z)} \sum_{i}^{N} l_i(x) \log C_i(z)$
- Optimal G:

٠

- One-hot labels: $G^* = \underset{G}{\operatorname{arg\,min}} \left(-N \log N + JSD\left(P_{G_1}, P_{G_2}, \dots, P_{G_N}\right) \right)$
- Soft labels: $G^* = \underset{\theta_G}{\operatorname{arg\,min}} (-NlogN + JSD(l(x_1) \cdot P_G, \dots, l(x_N) \cdot P_G))$

• By using soft labels for gradient reversal, we move from minimizing JSD between output distributions to minimizing JSD between each utterance distribution.

DAT framework

Experimental Setup

- Data sets:
 - ~23K hours en-X data in total
 - ~13K hours en-US
 - ~6K hours en-GB
 - ~4K hours en-IN
 - Extra en-AU data is used as unseen test set.

• Model:

- Our experiments are based on an RNN-T model.
 - 5-layer 1024 LSTM as encoder.
 - 2-layer 1024 LSTM as prediction network.
- 10K word-pieces as target tokens.

• Training and evaluation:

- Spectral augmentation is used for training.
- We pool all accent data with sampling probability in proportion to accent-specific corpus size, and train a unified model.
- Beam search with a size of 16 is used for decoding.

Experiments

- Baseline approaches:
 - Data pooling (M0):
 - Combines data of all accents and trains a unified model.
 - One-hot embeddings^[1] (M1):
 - Append one-hot accent labels to the outputs of each layer in the RNN-T model.
 - Linear embeddings^[1] (M2):
 - Based on one-hot embedding, a transform matrix is utilized to map one-hot labels into linear embedding vectors.
 - AIPNet-s^[2] (M3):
 - An extra accent-invariant GAN and decoder layer are introduced for pre-training and jointly trains ASR model and invariant feature generator.
 - We simplified it as AIPNet-s by replacing accent-specific GAN with accent labels.
- Data-pooling and AIPNet-s are accent-invariant (AI) systems, where accent information is not required in the evaluation stage.
- One-hot embeddings and linear embeddings are accent-specific (AS) systems, where accent information is required in the evaluation stage.

^[1] Li, Bo, et al. "Multi-dialect speech recognition with a single sequence-to-sequence model." In ICASSP'18.

^[2] Y. Chen, Z. Yang, C. Yeh, M. Jain and M. L. Seltzer, "Aipnet: Generative Adversarial Pre-Training of Accent-Invariant Networks for End-To-End Speech Recognition," In ICASSP'20.

Approach	AS/AI	en-US %				en-AU %		
		native	non-native	avg.	native	non-native	avg.	(unseen)
M0: Data pooling	AI	1.000	1.472	1.027	1.315	1.574	1.315	1.393
M1: AIPNet-s	AI	0.997	1.425	1.023	1.330	1.543	1.332	1.412
M2: One-hot embeddings	AS	0.981	1.528	1.010	1.284	1.540	1.284	1.574
M3: Linear embeddings	AS	0.991	1.442	1.017	1.284	1.534	1.282	1.569
M4: DAT	AI	0.985	1.448	1.012	1.293	1.567	1.294	1.373
M5: reDAT-unsup8	AI	0.969	1.472	0.996	1.270	1.465	1.266	1.359
M6: reDAT-unsup20	AI	0.980	1.470	1.006	1.282	1.492	1.280	1.361
M7: reDAT-soft	AI	0.973	1.409	0.997	1.309	1.440	1.307	1.388

• Results on 23K hour en-X data (normalized WER¹)

¹Normalized WER of a control model is calculated as the WER percentage over the reference. For example, Data Pooling is chosen as the reference so that its WER is 1.000, and DAT, as a control, is 0.985.

Approach	AS/AI	en-US %				en-AU %		
		native	non-native	avg.	native	non-native	avg.	(unseen)
M0: Data pooling	AI	1.000	1.472	1.027	1.315	1.574	1.315	1.393
M1: AIPNet-s	AI	0.997	1.425	1.023	1.330	1.543	1.332	1.412
M2: One-hot embeddings	AS	0.981	1.528	1.010	1.284	1.540	1.284	1.574
M3: Linear embeddings	AS	0.991	1.442	1.017	1.284	1.534	1.282	1.569
M4: DAT	AI	0.985	1.448	1.012	1.293	1.567	1.294	1.373
M5: reDAT-unsup8	AI	0.969	1.472	0.996	1.270	1.465	1.266	1.359
M6: reDAT-unsup20	AI	0.980	1.470	1.006	1.282	1.492	1.280	1.361
M7: reDAT-soft	AI	0.973	1.409	0.997	1.309	1.440	1.307	1.388

• DAT achieves competitive WERs on both native and non-native accents but up to 13% relative WER reduction on unseen accents.

Approach	AS/AI	en-US %				en-AU %		
		native	non-native	avg.	native	non-native	avg.	(unseen)
M0: Data pooling	AI	1.000	1.472	1.027	1.315	1.574	1.315	1.393
M1: AIPNet-s	AI	0.997	1.425	1.023	1.330	1.543	1.332	1.412
M2: One-hot embeddings	AS	0.981	1.528	1.010	1.284	1.540	1.284	1.574
M3: Linear embeddings	AS	0.991	1.442	1.017	1.284	1.534	1.282	1.569
M4: DAT	AI	0.985	1.448	1.012	1.293	1.567	1.294	1.373
M5: reDAT-unsup8	AI	0.969	1.472	0.996	1.270	1.465	1.266	1.359
M6: reDAT-unsup20	AI	0.980	1.470	1.006	1.282	1.492	1.280	1.361
M7: reDAT-soft	AI	0.973	1.409	0.997	1.309	1.440	1.307	1.388

- DAT achieves competitive WERs on both native and non-native accents but up to 13% relative WER reduction on unseen accents.
- The best performance of reDAT with 8 unsupervised clusters shows relative WER reductions of 2% to 4% over the data pooling baseline and 2% over DAT, respectively.

Approach	AS/AI	en-US %				en-AU %		
		native	non-native	avg.	native	non-native	avg.	(unseen)
M0: Data pooling	AI	1.000	1.472	1.027	1.315	1.574	1.315	1.393
M1: AIPNet-s	AI	0.997	1.425	1.023	1.330	1.543	1.332	1.412
M2: One-hot embeddings	AS	0.981	1.528	1.010	1.284	1.540	1.284	1.574
M3: Linear embeddings	AS	0.991	1.442	1.017	1.284	1.534	1.282	1.569
M4: DAT	AI	0.985	1.448	1.012	1.293	1.567	1.294	1.373
M5: reDAT-unsup8	AI	0.969	1.472	0.996	1.270	1.465	1.266	1.359
M6: reDAT-unsup20	AI	0.980	1.470	1.006	1.282	1.492	1.280	1.361
M7: reDAT-soft	AI	0.973	1.409	0.997	1.309	1.440	1.307	1.388

- DAT achieves competitive WERs on both native and non-native accents but up to 13% relative WER reduction on unseen accents.
- The best performance of reDAT with 8 unsupervised clusters shows relative WER reductions of 2% to 4% over the data pooling baseline and 2% over DAT, respectively.
- On non-native accents, reDAT with soft labels achieves significant improvements over DAT by 3% on en-US and 8% on en-GB, and over the best AI and AS baselines by 1% on en-US and 6% on en-GB.

Approach	AS/AI		en-US %			en-AU %		
		native	non-native	avg.	native	non-native	avg.	(unseen)
M0: Data pooling	AI	1.000	1.472	1.027	1.315	1.574	1.315	1.393
M1: AIPNet-s	AI	0.997	1.425	1.023	1.330	1.543	1.332	1.412
M2: One-hot embeddings	AS	0.981	1.528	1.010	1.284	1.540	1.284	1.574
M3: Linear embeddings	AS	0.991	1.442	1.017	1.284	1.534	1.282	1.569
M4: DAT	AI	0.985	1.448	1.012	1.293	1.567	1.294	1.373
M5: reDAT-unsup8	AI	0.969	1.472	0.996	1.270	1.465	1.266	1.359
M6: reDAT-unsup20	AI	0.980	1.470	1.006	1.282	1.492	1.280	1.361
M7: reDAT-soft	AI	0.973	1.409	0.997	1.309	1.440	1.307	1.388

- DAT achieves competitive WERs on both native and non-native accents but up to 13% WER relative reduction on unseen accents.
- The best performance of reDAT with 8 unsupervised clusters shows relative WER reductions of 2% to 4% over the data pooling baseline and 2% over DAT, respectively.
- On non-native accents, reDAT with soft labels achieves significant improvements over DAT by 3% on en-US and 8% on en-GB, and over the best AI and AS baselines by 1% on en-US and 6% on en-GB.
- In conclusion, reDAT yields significant improvements over strong baselines on non-native and unseen accents without sacrifice of native accents performance.

- We propose a feasible solution to mitigate accent mismatch problems for end-to-end RNN-T ASR using DAT.
- We demonstrate that DAT can achieve competitive WERs over accent-specific baselines on both native and non-native English accents, but with significantly better WER on unseen accents.
- We provide, for the first time, a theoretical guarantee that DAT extracts accent-invariant representations that generalize well across accents, and also prove that performing gradient reversal in DAT is equivalent to minimizing Jensen-Shannon divergence between domain distributions.
- We further proposed a novel method **reDAT**, based on unsupervised relabeling of the training data, and obtain substantial gains over DAT on non-native accents.

Thank you!