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INTRODUCTION

The design of handcrafted neural networks
requires a lot of time and resources. Recent
techniques in Neural Architecture Search (NAS)
have proven to be competitive or better than
traditional handcrafted design, although they
require domain knowledge and have generally
used limited search spaces. We propose a novel
framework for architecture search, utilizing a

TASK SIMILARITY

Let A= (T,, X,) and B = (Tg, Xg) be two task-data set pairs, where N, and Ng are two
trained architectures that are e-representative for A and B, respectively. We can define
a dissimilarity measure between A and B as follows:
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where S, is a given transform network search space, and O() is a general measure of
complexity (e.g., the number of parameters in a network), and N; is the network that

RESULTS

For our experiment, we Iinitialize with a set of
base binary classification tasks consisting of
finding specific digits in MNIST and specific
objects in Fashion-MNIST. Let the target task be
the binary classification task from Quick, Draw!
data set. Tasks from the same data set are more
similar than tasks from different data sets.
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Fig. 1. lllustration of the procedure to compute the distance from task A to task B.
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Given a dictionary of previous task-data pairs.
For any target task-data pair, our goal is to find
an architecture for achieving high performance
on the target task. The proposed Task-aware
Neural Architecture Search (TA-NAS) works as
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Fig. 3. The distance matrix of base tasks
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SEARCH SPACE

The search space is defined by the
structures of cell and skeleton. A cell is
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3. Search Algorithm. TA-NAS searches to
discover an optimal architecture in term of
performance for the target task-data set pair
on the search space.

pairs in the dictionary. Fig. 2. Examples of the cell and the skeleton

Table 1. The comparison with image classifiers
on Quick, Draw!

CONCLUSIONS

SEARCH ALGORITHM

Fusion Search (FUSE) is a search The training procedure is based on
algorithm that considers the network alternative minimization and can be
candidates as a whole and performs the divided into: | . .
optimization using gradient descent. For = freeze q, train network’s weights: Architecture Search problem. By introducing the

any set of C candidates, we relax the min L(W; @, €, X¢rqin) task similarity,. we can create a r_estricted _search
outputs by exponential weights: w space and quickly evaluate candidates using the

exp(a,) FUSE search algorithm. This search algorithm
c(X) = 2 S exp(a) c(X) can be applied to find the best way to grow or to
ceb &clec ‘ compress the current network.

TASK REPRESENTATION
We proposed TA-NAS to address the Neural

In our framework, we represent a task-data set
pair by neural network. A network architecture is
e-representative of a specific task if it performs
sufficiently well on the given task-data set pair. In
practice, well-known hand-designed architecture
can be chosen as the representation.

» freeze network’s weights, update a:
min L(a;w, ¢, X,q;)
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