Kernel-Interpolation-based Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

The University of Tokyo

IEEE ICASSP 2021

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Spatial Active Noise Control

Kernel-Interpolation-

based Filtered-x Least

Goals

- Broadband noise reduction over a continuous region
- Flexible array placement
- Low computational cost

Problem formulation

Cost function for multipoint pressure control

$$\mathcal{J} = \mathbb{E} \Big[\boldsymbol{e}^{\top}(n) \, \boldsymbol{e}(n) \Big]$$

• Minimizing noise only near error microphones

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Problem formulation

Cost function for multipoint pressure control

$$\mathcal{J} = \mathbb{E} \Big[\boldsymbol{e}^{\top}(n) \, \boldsymbol{e}(n) \Big]$$

• Minimizing noise only near error microphones

Cost function for spatial active noise control

$$\mathcal{L} = \mathbb{E}\left[\int_{\Omega} \underbrace{u(n, \boldsymbol{r})^2}_{\text{Sound pressure}} d\boldsymbol{r}\right]$$

- Minimizing noise over the region Ω .
- Sound pressure u(n, r) is not directly measurable.

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Kernel interpolation of sound field

- Estimate u(n, r) from error microphone measurements e(n).
- Interpolation filter *z* obtained in closed form in frequency domain.

$$u(n, \mathbf{r}) = \sum_{i=-\infty}^{\infty} \mathbf{z}^{\top}(i, \mathbf{r}) \mathbf{e}(n-i).$$
$$\mathbf{z}(i, \mathbf{r}) = \mathcal{F}^{-1} \Big[\mathbf{z}(\omega, \mathbf{r}) \Big] = \mathcal{F}^{-1} \Big[\big[(\mathbf{K}(\omega) + \lambda \mathbf{I})^{-1} \big]^{\top} \mathbf{\kappa}(\omega, \mathbf{r}) \Big]$$

Fourier transform

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Kernel interpolation of sound field

- Estimate u(n, r) from error microphone measurements e(n).
- Interpolation filter *z* obtained in closed form in frequency domain.

$$u(n, \mathbf{r}) = \sum_{i=-\infty}^{\infty} \mathbf{z}^{\top}(i, \mathbf{r}) \mathbf{e}(n-i).$$
$$\mathbf{z}(i, \mathbf{r}) = \mathcal{F}^{-1} \Big[\mathbf{z}(\omega, \mathbf{r}) \Big] = \mathcal{F}^{-1} \Big[\big[(\mathbf{K}(\omega) + \lambda \mathbf{I})^{-1} \big]^{\top} \boldsymbol{\kappa}(\omega, \mathbf{r}) \Big]$$

Defined by kernel function κ

• Restricts interpolating function to satisfy Helmholtz equation.

Spherical Bessel function

$$\kappa(\omega, \boldsymbol{r}, \boldsymbol{r}') = j_0 \left(\frac{\omega}{c} \|\boldsymbol{r} - \boldsymbol{r}'\|\right)$$

Speed of sound

$$\kappa(\omega, \boldsymbol{r}) = \left[\kappa(\omega, \boldsymbol{r}, \boldsymbol{r}_1), \dots, \kappa(\omega, \boldsymbol{r}, \boldsymbol{r}_M)\right]^\top$$

$$\boldsymbol{K}(\omega) = \begin{bmatrix}\kappa(\omega, \boldsymbol{r}_1, \boldsymbol{r}_1) & \dots & \kappa(\omega, \boldsymbol{r}_M, \boldsymbol{r}_1)\\ \vdots & \ddots & \vdots\\ \kappa(\omega, \boldsymbol{r}_1, \boldsymbol{r}_M) & \dots & \kappa(\omega, \boldsymbol{r}_M, \boldsymbol{r}_M)\end{bmatrix}$$

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

• Rewrite cost function using interpolation filter

$$\mathcal{L} = \mathbb{E}\left[\int_{\Omega} u(n, \boldsymbol{r})^2 \, d\boldsymbol{r}\right] = \mathbb{E}\left[\sum_{i, j = -\infty}^{\infty} \boldsymbol{e}^{\top}(n-i) \underbrace{\boldsymbol{\Gamma}(i, j)}_{\int_{\Omega} \boldsymbol{z}(i, \boldsymbol{r}) \boldsymbol{z}^{\top}(j, \boldsymbol{r}) \, \mathrm{d}\boldsymbol{r}}\right]$$

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

• Rewrite cost function using interpolation filter

$$\mathcal{L} = \mathbb{E}\left[\int_{\Omega} u(n, \boldsymbol{r})^2 \, d\boldsymbol{r}\right] = \mathbb{E}\left[\sum_{i, j = -\infty}^{\infty} \boldsymbol{e}^{\top}(n - i) \underbrace{\boldsymbol{\Gamma}(i, j) \, \boldsymbol{e}(n - j)}_{\int_{\Omega} \boldsymbol{z}(i, \boldsymbol{r}) \boldsymbol{z}^{\top}(j, \boldsymbol{r}) \, \mathrm{d}\boldsymbol{r}}\right]$$

• Simplify interpolation weighting filter

$$\boldsymbol{A}(k) = \sum_{\nu = -\infty}^{\infty} \boldsymbol{\Gamma}(\nu, \nu + k) = \mathcal{F}^{-1} \left[\int_{\Omega} \boldsymbol{z}^*(\omega, \boldsymbol{r}) \boldsymbol{z}^{\top}(\omega, \boldsymbol{r}) d\boldsymbol{r} \right]$$

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

• Rewrite cost function using interpolation filter

$$\mathcal{L} = \mathbb{E}\left[\int_{\Omega} u(n, \boldsymbol{r})^2 \, d\boldsymbol{r}\right] = \mathbb{E}\left[\sum_{i, j = -\infty}^{\infty} \boldsymbol{e}^{\top}(n - i) \underbrace{\boldsymbol{\Gamma}(i, j) \, \boldsymbol{e}(n - j)}_{\int_{\Omega} \boldsymbol{z}(i, \boldsymbol{r}) \boldsymbol{z}^{\top}(j, \boldsymbol{r}) \, \mathrm{d}\boldsymbol{r}}\right]$$

• Simplify interpolation weighting filter

$$\boldsymbol{A}(k) = \sum_{\nu = -\infty}^{\infty} \boldsymbol{\Gamma}(\nu, \nu + k) = \mathcal{F}^{-1} \left[\int_{\Omega} \boldsymbol{z}^*(\omega, \boldsymbol{r}) \boldsymbol{z}^{\top}(\omega, \boldsymbol{r}) d\boldsymbol{r} \right]$$

• Compute gradient

$$\nabla \mathcal{L}(i) = \sum_{k=-\infty}^{\infty} \sum_{\substack{j=0\\ \text{Secondary path}}}^{J-1} \underbrace{\mathbf{G}^{\top}(j)}_{\text{Secondary path}} \mathbf{A}(k) \mathbb{E} \Big[\mathbf{e}(n) \underbrace{\mathbf{x}^{\top}(n-i-j-k)}_{\text{Reference signal}} \Big]$$

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introductio

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Practical algorithm

- Truncate and delay $oldsymbol{A}$ to obtain causal finite impulse response filter $ar{oldsymbol{A}}$
- Delay error signal e to obtain correct cross-correlation
- Combine interpolation filter and secondary path

$$\boldsymbol{H}(i) = \sum_{j=-\infty}^{\infty} \bar{\boldsymbol{A}}^{\top}(j)\boldsymbol{G}(i-j)$$

- Use instantaneous gradient estimate for update of control filter $oldsymbol{W}$

$$\boldsymbol{W}_{n+1}(i) = \boldsymbol{W}_n(i) - \boldsymbol{\mu} \sum_{j=0}^{J+2K-1} \boldsymbol{H}^{\top}(j) \boldsymbol{e}(n-K) \boldsymbol{x}^{\top}(n-i-j)$$

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

- Perform costly filter update block-wise in frequency domain
- Compute convolution and correlation operations with overlap-save and fast Fourier transform
- Filter update is delayed by block length
- Control filter is obtained in time domain
- Loudspeaker signals are computed each sample to maintain causality

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Evaluation

- Simulation in reverberant space, $\mathrm{RT}_{60} pprox 0.35 s$
- 28 error microphones and 16 loudspeakers.

Simulated room

Noise sources

- *Noise* White noise bandlimited to 100-500Hz.
- *Song* High Horse by artist Secret Mountains.
- Instrumental Instrumental version of Song.

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Evaluation

- Simulation in reverberant space, $\mathrm{RT}_{60} pprox 0.35 s$
- 28 error microphones and 16 loudspeakers.

Simulated room

Noise sources

- *Noise* White noise bandlimited to 100-500Hz.
- *Song* High Horse by artist Secret Mountains.
- Instrumental Instrumental version of Song.

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Conclusions

Performance metric: regional power reduction

- Ratio of sound power with ANC compared to without ANC.
- Discretize region of interest Ω with 400 equally spaced points r_{ν} .

$$P_{\rm reg}(n) = \frac{\sum_{\nu} \sum_{\tau} u(n-\tau, \boldsymbol{r}_{\nu})^2}{\sum_{\nu} \sum_{\tau} u_{\rm p}(n-\tau, \boldsymbol{r}_{\nu})^2}$$

Comparison of KI-FxLMS and FxLMS for Noise

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

Comparison of KI-FxLMS and FxLMS for Noise

Power distribution after 600 seconds

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

ast block KI-FxLMS

Results

Average noise reduction from 120 to 240 seconds.

	Noise	Song	Instrumental
FxLMS	-3.81	-3.28	-3.13
Fast Block FxLMS	-3.88	-3.17	-3.12
KI-FxLMS	-7.88	-3.99	-4.39
Fast Block KI-FxLMS	-8.00	-3.60	-4.08

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results

- Both proposed methods outperform the conventional methods for all source types.
- For non-stationary noises, fast block KI-FxLMS performance is slightly degraded.

- The proposed KI-FxLMS outperforms FxLMS with regards to regional power reduction.
- Zero to marginal increase in computational cost.
- Fast block implementation significantly more efficient at low cost in performance.

Kernel-Interpolationbased Filtered-x Least Mean Square for Spatial Active Noise Control in Time Domain

Jesper Brunnström & Shoichi Koyama

Introduction

Kernel interpolation

Kernel-interpolationbased FxLMS

Fast block KI-FxLMS

Results