

Two-Stage Framework for Seasonal Time Series Forecasting

Qingyang Xu^{1,2}, Qingsong Wen³, Liang Sun³

¹MIT Operations Research Center

²MIT Laboratory for Financial Engineering

³Machine Intelligence Technology, DAMO Academy, Alibaba Group

Overview

• Background: seasonal time series forecast and self-supervised learning

Two-stage framework for seasonal time series forecasting

Prediction performance on M4 Hourly dataset and ablation study

Conclusion and future work

Seasonal Time Series Forecasting

 Auto-scaling of cloud computing resources to minimize unused resource

Goal: predict next horizon

$$x_f = (x_{t+1}, \dots, x_{t+h})$$

from historical TS values $x_{his} = (x_{t-L+1}, ..., x_t)$

Self-supervised Learning (SSL)

• LeCun (ICML 2019): model learns to predict one part of its input data from other parts of its input

• Split-brain autoencoder (Zhang et al. 2017)

- Two-stage procedure of general SSL
 - Pre-training learn latent representation of data z = enc(x)
 - Fine-tuning use latent representation for downstream tasks y = f(z)
- Advantages
 - Pre-train on large unlabeled data and fine-tune to tasks with small labeled data
 - Learn latent representation of data rather than memorizing outcomes

Challenges of SSL on univariate seasonal TS

• Simple models (e.g., MLP, auto-regression) yield strong baselines

• Univariate time series $\rightarrow O(T)$ with seasonality \rightarrow small data!

Random masking in pre-training does not utilize periodic structure

Black-box deep learning models overfit and are difficult to interpret

Overview

• Background: seasonal time series forecast and self-supervised learning

Two-stage framework for seasonal time series forecasting

Prediction performance on M4 Hourly dataset and ablation study

Conclusion and future work

• Traditionally: use **yesterday** to predict **today**

• Traditionally: use **yesterday** to predict **today** (surprise!)

• Question: what if we also know tomorrow?

• Question: what if we also know tomorrow?

• Idea: what if we first *predict* tomorrow?

Stage 1

Predict tomorrow with yesterday

Stage 1

• Predict tomorrow with yesterday

Stage 2 - Training

Predict today with yesterday and (true) tomorrow

Stage 2 - Training

Predict today with yesterday and (true) tomorrow

Stage 2 - Prediction

Predict tomorrow with yesterday

Stage 2 - Prediction $\hat{\mathbf{x}}_f = f_2^*(\mathbf{x}_{his}, \hat{\mathbf{x}}_{fut}) = f_2^*(\mathbf{x}_{his}, f_1^*(\mathbf{x}_{his}))$

Predict today with yesterday and (predicted) tomorrow

Schematic of 2S Framework

Wen, Q., He, K., Sun, L., Zhang, Y., Ke, M., & Xu, H. (2021). RobustPeriod: Time-frequency mining for robust multiple periodicity detection. *in Proc. SIGMOD*, 2021.

Advantages of 2S on univariate seasonal TS

- Simple models (e.g., MLP, auto-regression) yield strong baselines
 - Reliable predictions for Stage 1 (yesterday → tomorrow) models
- Univariate time series $\rightarrow O(T)$ with seasonality \rightarrow small data!
 - Use **both past and future** to predict the present
- Black-box deep learning models overfit and are difficult to interpret
 - Stage 1 (yesterday → tomorrow) outcomes are transparent and easy to evaluate
- Random masking in pre-training does not utilize periodic structure
 - Use seasonality to choose the future horizon length H

2S as Model Augmentation Technique

Wen, Q., He, K., Sun, L., Zhang, Y., Ke, M., & Xu, H. (2021). RobustPeriod: Time-frequency mining for robust multiple periodicity detection. *in Proc. SIGMOD*, 2021.

Overview

• Background: seasonal time series forecast and self-supervised learning

Two-stage framework for seasonal time series forecasting

Prediction performance on M4 Hourly dataset and ablation study

Conclusion and future work

Performance Metrics

• x_t true time series values

- \hat{x}_t predicted values
- Also compute each metrics after removing the worst 5% predictions (e.g., MAPE-95) to reduce the effect of outliers

MAPE =
$$\frac{1}{n} \sum_{t=1}^{n} \frac{|x_t - \hat{x}_t|}{|x_t|}$$

RMSPE =
$$\sqrt{\frac{1}{n} \sum_{t=1}^{n} \frac{|x_t - \hat{x}_t|^2}{|x_t|^2}}$$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{t=1}^{n} |x_t - \hat{x}_t|^2}$$

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |x_t - \hat{x}_t|$$

Performance on M4 Competition* Hourly data

• 414 seasonal TS with 700 or 960 time points. h = 12, H = 12, L = 72

Model	MAPE	MAPE-95	RMSPE	RMSPE-95	RMSE	RMSE-95	MAE	MAE-95
Two-Stage	1.399	0.346	11.629	0.562	0.305	0.232	0.214	0.179
MLP+MAR	1.417	0.379	11.058	0.610	0.330	0.255	0.235	0.199
MLP	1.423	0.410	11.197	0.605	0.385	0.305	0.281	0.242
Deep-LSTM	1.539	0.459	11.857	0.652	0.422	0.341	0.320	0.278
MAR	1.551	0.416	12.275	0.672	0.349	0.275	0.253	0.216
RESTFul	1.642	0.451	11.808	0.721	0.375	0.301	0.276	0.238
PrevPeriod	1.776	0.435	14.365	0.733	0.391	0.292	0.263	0.217
SPAR-h12	2.077	0.570	15.825	0.869	0.447	0.364	0.340	0.297

Enhance existing model performance

• Augment Stage 1 outputs $f_1^*(x_{his})$ as inputs to baseline (BL) model

h	Model	MAPE	MAPE-95	RMSPE	RMSPE-95	RMSE	RMSE-95	MAE	MAE-95
6	BL	1.265	0.332	10.008	0.542	0.285	0.219	0.201	0.169
	2 S	1.214	0.305	10.102	0.496	0.266	0.201	0.185	0.155
12	BL	1.454	0.384	11.423	0.617	0.331	0.258	0.237	0.201
	2S	1.399	0.346	11.629	0.562	0.305	0.232	0.214	0.179
24	BL	1.511	0.405	11.833	0.651	0.349	0.273	0.251	0.214
	2S	1.489	0.374	11.900	0.614	0.319	0.247	0.226	0.191

Optimizing future horizon length H^*

• Larger $H \rightarrow$ more structure, harder to learn. **S1 MSE** is good diagnostic.

Н	МАРЕ	MAPE-95	RMSPE	RMSPE-95	RMSE	RMSE-95	MAE	MAE-95	S1 MSE
0	1.454	0.384	11.423	0.617	0.331	0.258	0.237	0.201	N/A
6	1.417	0.351	11.715	0.570	0.308	0.235	0.216	0.182	0.151
12	1.399	0.346	11.629	0.562	0.305	0.232	0.214	0.179	0.147
18	1.462	0.356	12.052	0.582	0.309	0.237	0.218	0.183	0.158
24	1.470	0.356	11.985	0.585	0.306	0.234	0.215	0.180	0.166

Overview

• Background: seasonal time series forecast and self-supervised learning

Two-stage framework for seasonal time series forecasting

Prediction performance on M4 Hourly dataset and ablation study

Conclusion and future work

Conclusion & Future Work

- Two-stage framework (motivated by SSL) achieves state-of-the-art performance of horizon forecast on M4 Hourly data
 - Address the challenges of applying SSL to univariate seasonal TS forecasting
 - Enhance prediction accuracy of baseline models
 - Important to optimize the future horizon length H^*
- Future work
 - Joint training for Stage 1 and Stage 2 parameters
 - Explore combinations of Stage 1 and Stage 2 models

Thanks! Q&A