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Graph Clustering (GC)

e Graph Clustering (GC) is a core analysis technique frequently applied in various
network data:
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[Source : [Zhang et al., 2007]]
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GC under Partial Observation
e Real networks are often available with partial observation of its edges due to:

— [Massive Data] e.g., billions of edges in Facebook or Twitter follower-followee

network.
— [Cost] e.g., high cost for ecological /biological network data acquisition.

— [Security/Privacy] e.g., intentionally removed or hidden edges in terrorist
networks/radical group networks.

[Sources : https://associationsnow.com, https://science.sciencemag.org]
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Existing Work with Provable Guarantees

A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinayak and Hassibi,
2016; Chen et al., 2014], which proposed GC under partial edge observation with
provable guarantees, features

[1 single membership identification

— the entities often admit mixed membership in real-world networks

[1 random query based edge acquisition scheme
— may not be easy to implement in some applications; e.g., in field surveys and
in networks with hidden or intentionally removed edges
[] convex optimization based problem formulation

— hard to scale up for real-world large graphs

We aim to design a systematic edge query scheme for mixed membership
identification via a lightweight algorithm with provable guarantees.
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Mixed Membership Model

e The nth entity belongs to kth clus-

ter with prob. mg, N Entities
O0000000 .... OOoOoooood

K
= D pe1 Mk = 1, My > 0.

K Clusters

e m, = [Min,...,mMKn| is called

as the membership vector of n.

o M = [my,...,my] € REXN js
called as the membership matrix.

e B ¢ REXK |5 cluster-cluster in-
teraction matrix.

— B(p,q) denotes the prob. that
cluster p connects with cluster g.

If all m,,’s are unit vectors (single cluster membership), it is the so-called the stochastic block model
(SBM) [Snijders and Nowicki, 1997].
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Mixed Membership Model
e The edges of the graph are represented using adjacency matrix A € {0, 1}V*¥:

A(i,j) ~ Bernoulli (P(3,5)), P=M'BM, 1'M=1", M >0.

YA

|:> Adjacency éMatrix A

\ .....................

N Entities \

AG, ) he (0,1}

e The model is reminiscent of the mized membership stochastic block (MMSB)
model in overlapped community detection [Airoldi et al., 2008; Mao et al., 2017].
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Proposed Systematic Edge Query

SiU---USy,={1,...,N}
SiNSm =0, ¥l +£m

N Entities

O

Adjacency Submatrix between S; and S,, = A, € RISl

Edge Query Principle (EQP)

o Forevery / € [L],| K < |Sy| |holds. Let | m, € [L] |and | {¢,}2, =[L] |

e For every /,., there exists a pair of indices m,. and ¢, where

g'r—l—l 7& er

that the edges from the blocks | Ay, ,,, and Ay

r+1,Mr

are queried |.

such
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EQP Patterns
Some patterns for A following EQP with N = 1000, K = 5 and L = 10.

Goal : Learn M by observing A via EQP

Algorithm Design:
Step 1: Estimate U € RY*¥ such that range(U) = range(M ")
Step 2: Estimate M from U via structured matrix factorization (SMF)
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Subspace Estimation via Block Subspace Stitching
A toy example with L = 3 and the ideal case

L
Apm =Py =M,BM,, : B S T
1
Pyy=M|BM,, Pyy=M,BM,, L 2
Pyy=M,BM,, P;;=M;BM, . 3

e Define C, :=[P{,,PJ,]" and Cy :=[PJ ., PJ,]". Consider their top-K SVD:
1,20 4722 2,1, 43,1

~T ~T.+~~T
cC.=U,,U,|'2v' C,=[U,,U;]'SV .

e The bases of range(M ), range(M) and range(M ) are:

U,=M{BO, U,=M]BO®, Us;=M]B®, |® +0 in general.
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Subspace Estimation via Block Subspace Stitching

e Our goal is to get a certain Uj such that the bases L :
can be “stitch” ed to have

range(lUT, Us, Ug]TJ) = range(LMl,MQ,Mg]i). g 2

U MT 3

e \We can obtain such U3 as below:

Us .= UsUW, = M]B® x (M} B®)' x M]B® = M] Be.

e This “subspace stitching' idea is recursively applied over the queried blocks
Apom, and Ay oy, forr=1,..., L —1.
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Proposed Algorithm

Algorithm 1: Proposed Algorithm

input : {A,,;}. L, K
1 divide the blocks as {A¢, m, }re1, {Ae,41,mn }ETT

(where £, # £ri1, {€-}5=1 = [L], m, € [L];
T «+ |L/2];

F F T.

CT £ [AfT,mT ? A€T+1,mT] ?
Uy, Uy, ] BV « svdk(Cr);
Uref <_ U€T+1;
forr=T4+1:1:L—1do

T T T
C’r <_ [Aer,mr ? A£r+1 ,m-r-] ;
UL, U, "=V, T+ svdk(C);
Upys < Us,ys Ug,.Uref : \
10 U€r+1; Estimation of U

11 end
12 Uret + Upps it
13 forr=T:-1:2do

14 C, +— [Azﬂ,mr : AZ_I,mT]T;

15 [ﬁgﬂ, ffg_l]TZerrT + svdk (Cr);
16 Uer‘—l — i}f,r_l [’}grUref ;

N S U R W R

LI -]

17 Uret < Us,._y;

18 end -/

1w U« L - ,UI]T;

20 apply SPA on U to estimate M. —— Estimation of M from U

output: Estimated membership matrix M.
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Proposition 1: (Subspace Identifiability - Ideal Case)

Assume that
Apm = Py = MZBMm c RISeI*|Sm]

holds true for all £,m € |L] and rank(M) = rank(B) = K. Suppose that

the A, ,,'s are queried according to the proposed EQP. Then, the output U by
Algorithm 1 satisfies

P

range(U) = range(M ).

U =GM, M >0, 1'"M =1", G e R¥*E is nonsingular.

e Algorithm 1 employs successive projection algorithm (SPA) [Gillis and Vavasis,
2014] to identify M from U.

e SPA can provably identify M in K steps, if G is nonsingular and if there exists
{n1,...,nK} such that M (:,nx) = e; (pure nodes).
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Proposition 2: (Subspace ldentifiability - Binary Observation Case)

Let p := max; ; P(%,5) be the maximal entry of P. Suppose that p = Q2(L log(N/L)/N)
and L = O(pN/d) where d is the maximal degree of all the nodes. Also assume that

N0 <maX <L2’ (K’Y2)LPHQ(B)>> |
o2 (B)

min

Then, the output U by Algorithm 1 satisfies the following with probability of at least
1 — O(L?/N):

(Kv2)L/2f<>(B)\/ﬁ)
Omin(B)\/N/L |

where U is an orthogonal basis of range(M ') and O € R¥*¥ is an orthogonal matrix.

IU -UO|lr =0 (

Larger L makes the error bound looser, but larger L means that only fewer
queries need to be made, and thus less resource consuming.
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Synthetic Data Experiments
e The membership vectors m,, are drawn from the

Dirichlet distribution with parameters being (1/K)1.

e The entries of matrix B are drawn from [0, 1] uni-
formly at random and is made diagonally dominant.

e Fixed L =10 and K = 5.

e We employ two state-of-the-art mixed membership learning algorithms, namely,

GeoNMF [Mao et al., 2017] and CD-MVSI [Huang and Fu, 2019] as baselines

Graph | Ideal Case (A = P) || Binary Observation Case (A(i,j) ~ Bernoulli (P(%,7)))
Size Proposed Proposed GeoNMF | CD-MVSI
N Subspace Distance || Subspace Distance MSE MSE MSE
1 x 10% 7.34x10713 0.342 0.0475 | 0.0554 0.0839
2 x 10* 2.80x10~13 0.209 0.0198 | 0.0386 0.0943
4 x 10% 1.22x10~13 0.194 0.0123 | 0.0341 0.0955
8 x 10% 1.12 x10~13 0.101 0.0066 | 0.0261 0.0924
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Real Data Experiments - Microsoft Academic Graph (MAG)

e The entities represent the authors of
research papers published in 3 different

fields.
e The diagonal query pattern is chosen.

e The averaged Spearman’s rank corre-
lation coefficient (SRC) is used to eval-
uate the methods:

— The SRC takes values between —1
and 1.
SRC is high if the ranking of the

entries in two vectors are similar.
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MAG2 (N = 19457, K = 3) fixing L = 10.

Real Data Experiments
Table 1: Averaged SRC and runtime in seconds for MAG1 (N = 37680, K = 3) and

Datasets Proposed GeoNMF CD-MVSI
SRC | Time(s.) | SRC | Time(s.) | SRC | Time(s.)
MAG1 | 0.125 0.26 0.122 1.79 0.089 0.59
MAG2 | 0.441 0.23 0.240 4.66 0.249 0.53

Table 2: Clustering accuracy (%) of MAG2. N = 19457, K = 3.

Alorithms | L=10 | L=25 | L=50 | L=75 | L =100
Proposed | 78.70 | 77.19 | 67.81 | 61.85 56.98
GeoNMF 538.16 57.87 56.38 52.638 52.33
CD-MVSI 53.45 21.82 14.57 13.53 11.71
SC-Norm 64.80 67.29 59.80 52.70 55.90
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Summary

e Proposed a novel framework that enables provable graph clustering with
partially observed edges.

e The highlights of the proposed framework are:

[] systematic edge query scheme useful for
some important applications

[1 lightweight algorithm based on truncated f
SVD /‘

(1 mixed membership learning of the entities JA\\ 4
with provable guarantees ’

[] promising performance on synthetic and
real data experiments
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Thank You!l
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