On Permutation Invariant Training for Speech Source Separation

Introduction

Permutation ambiguity and utterance level PIT (<u>uPIT</u>)

- C! prediction to target loss pairs for training a speaker independent network.
- uPIT minimizes the smallest separation error of all utterance-level permutations but causes local speaker swaps and leakage between separated signals.

Frame level PIT (tPIT) + clustering (<u>Deep CASA</u>)

- Optimize separation for each frame independently in the STFT domain by tPIT.
- Followed by a clustering model to track permutation across frames.

<u>uPIT + speaker-ID loss</u>

- uPIT aligns the order of the separation signals with the input.
- A loss in the speaker embedding space strengthens speaker consistency.

Our work

- Extend tPIT + clustering to waveform-based models (<u>Conv-TasNet</u>).
- Propose an efficient loss for the clustering stage in waveform-based models.
- Study three domains for tPIT: waveform, latent space, STFT (Deep CASA).
- Extend uPIT + speaker-ID to uPIT + <u>PASE</u> and compare with tPIT + clustering.

tPIT for Conv-TasNet

tPIT-time

$$\pi_k^* = \underset{\pi_k \in P}{\operatorname{arg\,min}} \sum_{c=1}^C \left| \mathbf{\hat{x}}_{c,k} - \mathbf{x}_{\pi_k(c),k} \right|$$

tPIT-latent

Xiaoyu Liu, Jordi Pons

Dolby Laboratories

An efficient loss for training the clustering model

- A clustering model is needed to track permutations across frames at test time.
- The clustering model maps the separated frames to a permutation embedding space, such that each cluster contains frames with the same permutation.
- Deep CASA optimizes pairwise distance between every pair of frames, which is too expensive for waveform-based models, due to very short frame shift.
- We propose to use the generalized end-to-end (GE2E) loss, which only compares each frame with the centroids of the clusters
- For the kth frame that belongs to permutation p, we optimize

$$oss_{GE2E} = \sum_{k=1}^{K} -\log \frac{\exp -d(\mathbf{h}_{k,k})}{\sum_{i=1}^{C!} \exp (-d(\mathbf{h}_{k,k}))}$$

where $m{h}_{k,p}$ is the permutation embedding, $m{m}_p$ is the pth cluster center, and $d(\mathbf{x}, \mathbf{y}) = w||\mathbf{x} - \mathbf{y}||^2 + b$ is the Euclidean distance with learnable w and b.

Perm. label

 $,p,\mathbf{m}_p)$ $(\mathbf{h}_{k,p},\mathbf{m}_i))$

Experiment setup

- Trained models on the WSJ0-2mix dataset.

Evaluation metrics

- SI-SNRi (dB): measures separation quality.

SI-SNRi results of tPIT + clustering

uPIT-waveform uPIT-STFT tPIT-STFT + optimal clust tPIT-STFT + clustering tPIT-time + optimal cluste tPIT-time + clustering tPIT-latent: enc/dec (Fig. tPIT-latent + optimal clust tPIT-latent + clustering

tPIT-latent + clustering:

pairwise similarity loss GE2E loss

FER and HSR of tPIT + clustering

	uPIT (waveform)		tPIT-latent + clustering		tPIT-STFT + clustering	
	FER	HSR	FER	HSR	FER	HSR
WSJ0	6.1	6.0	5.4	1.8	4.9	2.2
Libri	9.4	14.8	8.5	9.1	6.6	7.4
VTCK	12.3	22.8	9.4	10.7	7.8	7.2

- clusters and the predicted clusters.
- GE2E loss is more effective than the pairwise loss.

uPIT + PASE results

	uPIT-waveform		uPIT+PASE		uPIT+PASE cascaded		tPIT-latent+clustering	
	SI-SNRi	FER	SI-SNRi	FER	SI-SNRi	FER	SI-SNRi	FER
WSJ0	15.5	5.2	15.9	4.5	17.5	4.6	16.0	4.3
Libri	10.7	9.0	10.8	8.0	11.9	7.6	11.1	7.8
VTCK	9.5	12.4	9.9	11.2	10.9	11.3	10.9	9.5

- permutation errors.

Paper ID: 3140

• Evaluated models on the test sets of WSJ0-2mix, Libri-2mix, and VCTK-2mix. • 8 kHz data, except for the uPIT+PASE experiments, which uses 16 kHz version. PASE pretrained on 50 hours of LibriSpeech data (2338 speakers).

• Frame error rate, FER (%): percentage of frame level permutation errors. • Hard sample rate, HSR (%): percentage of test samples with SI-SNRi < 5 dB.

	WSJ0	Libri	VCTK				
	15.9	10.4	9.4				
	15.5	11.4	12.7				
sters	18.5	16.0	15.5				
	17.5	13.9	13.6				
ers	16.7	12.1	13.0				
	15.5	9.8	9.9				
2, top)	55.5	54.9	53.9				
sters	17.6	12.9	13.7				
	16.5	11.0	11.0				
: clustering loss variants							
	16.2	10.7	10.8				
	16.5	11.0	11.0				

uPIT trained Deep CASA (uPIT-STFT) generalizes better than Conv-TasNet.

• tPIT-latent performs better than tPIT-time, for both the ground truth (optimal)

tPIT-STFT + clustering (Deep CASA) performs the best, indicating the advantage of STFT in terms of reducing permutation errors and improving generalization.

• uPIT + PASE improves uPIT, but not by as much as tPIT-latent + clustering • The additional conditioning improves SI-SNRi, but does not further reduce