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Introduction

Permutation ambiguity and utterance level PIT (uPIT)

* (I prediction to target loss pairs for training a speaker independent network.

* UPIT minimizes the smallest separation error of all utterance-level permutations
but causes local speaker swaps and leakage between separated signals.

Frame level PIT (tPIT) + clustering (Deep CASA)

* Optimize separation for each frame independently in the STFT domain by tPIT.

* Followed by a clustering model to track permutation across frames.

uPIT + speaker-ID loss

* uPIT aligns the order of the separation signals with the input.

* A loss in the speaker embedding space strengthens speaker consistency.

Our work

* Extend tPIT + clustering to waveform-based models (Conv-TasNet).

* Propose an efficient loss for the clustering stage in waveform-based models.
* Study three domains for tPIT: waveform, latent space, STFT (Deep CASA).
* Extend uPIT + speaker-ID to uPIT + PASE and compare with tPIT + clustering.

An efficient loss for training the clustering model
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* A clustering model is needed to track permutations across frames at test time.

* The clustering model maps the separated frames to a permutation embedding
space, such that each cluster contains frames with the same permutation.

* Deep CASA optimizes pairwise distance between every pair of frames, which
is too expensive for waveform-based models, due to very short frame shift.

* We propose to use the generalized end-to-end (GE2E) loss, which only
compares each frame with the centroids of the clusters

* For the kth frame that belongs to permutation p, we optimize

K
exp —d hk‘., , 111
lossap2E = Z — log el ( y i“l p)
k=1 Zi:l exXp (_ ( k.,ps mg))

where hk,p is the permutation embedding, m,, is the pth cluster center, and
d(x,y) = w||x — y||? + b is the Euclidean distance with learnable w and b.

Experiment setup

* Trained models on the WSJ0-2mix dataset.
* Evaluated models on the test sets of WSJ0-2mix, Libri-2mix, and VCTK-2mix.
* 8 kHz data, except for the uPIT+PASE experiments, which uses 16 kHz version.

PASE pretrained on 50 hours of LibriSpeech data (2338 speakers).

Evaluation metrics
* SI-SNRi (dB): measures separation quality.

Frame error rate, FER (%): percentage of frame level permutation errors.
Hard sample rate, HSR (%): percentage of test samples with SI-SNRi < 5 dB.

{PIT for Conv-TasNet
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o )?1,)?2: matrices containing separated short waveform frames (2 ms/frc:me)

* tPIT finds the best permutation m;, for the kth frame, and reorders frames
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* After overlap-and-add, SI-SNR loss is minimized to optimize the model
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* First train the enc./dec. to generate the N-dim ideal latent features ¢, 5>.
* Then train the separator by tPIT in the latent space for each frame k:
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uPIT + PASE
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* PASE is a pretrained problem agnostic speech encoder, that generates
features with various speech information, such as pitch, speaker-ID, phoneme.

* uPIT finds the best utterance permutation ™", and reorders outputs to align
with the reference signails.

* The PASE loss implicitly enforces permutation consistency across frames.
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* Investigate if model conditioning could further reduce permutation errors.
* First train a Conv-TasNet by uPIT + PASE loss.

* Then train another Conv-TasNet conditioned on PASE features of the
separated signals (reordered by the best permutation) from the first Conv-
TasNet.

* The PASE encoder in the second stage is finetuned with the Conv-TasNet.

SI-SNRi results of tPIT + clustering

Paper ID:

WSJO | Libri | VCTK
uPI'T-waveform 15.9 10.4 9.4
uPIT-STFT 15.5 11.4 12.7
tPIT-STET + optimal clusters 18.5 16.0 15.5
tPIT-STFT + clustering 17.5 13.9 13.6
tPI'T-time + optimal clusters 16.7 12.1 13.0
tPIT-time + clustering 15.5 9.8 9.9
tPIT-latent: enc/dec (Fig. 2, top) 55.5 54.9 53.9
tPIT-latent + optimal clusters 17.6 12.9 13.7
tPI'T-latent + clustering 16.5 11.0 11.0
tPI'T-latent + clustering: clustering loss variants
pairwise similarity loss 16.2 10.7 10.8
GEZ2E loss 16.5 11.0 11.0
FER and HSR of tPIT + clustering
uPIT tPIT-latent | tPIT-STFT
(waveform) | + clustering | + clustering
FER | HSR | FER | HSR | FER | HSR
WSJO 6.1 6.0 54 1.8 4.9 2.2
Libri 9.4 14.8 8.5 9.1 6.6 7.4
VICK || 123 | 228 | 94 10.7 | 7.8 7.2

UPIT trained Deep CASA (uPIT-STFT) generalizes better than Conv-TasNet .

tPIT-latent performs better than tPIT-time, for both the ground truth (optimal)
clusters and the predicted clusters.

tPIT-STFT + clustering (Deep CASA) performs the best, indicating the advantage
of STFT in terms of reducing permutation errors and improving generalization.

GE2E loss is more effective than the pairwise loss.

UPIT + PASE results

uPIT-waveform uPIT+PASE uPIT+PASE cascaded || tPIT-latent+clustering
SI-SNRi | FER || SI-SNRi | FER || SI-SNRi FER SI-SNRi FER
WSJ0 15.5 J.2 15.9 4.5 17.5 4.6 16.0 4.3
Libri 10.7 9.0 10.8 8.0 11.9 1.6 11.1 1.8
VTCK 9.5 12.4 9.9 11.2 10.9 11.3 10.9 9.5

uPIT + PASE improves uPIT, but not by as much as tPIT-latent + clustering

The additional conditioning improves SI-SNRi, but does not further reduce
permutation errors.
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