&Georgiaﬂmgﬁﬁﬁ@]ﬁ@ Switched Hawkes Processes
| eifTfechnology

Namrata Nadagouda and Mark A. Davenport

Hawkes Processes Switched Model

Static Multivariate Model

/A \\ / We propose a switched model - the overall process switches among a known \\ Model Description

class of auto-regressive point processes used to model data in which events tend to
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Majority of the works on Hawkes Processes assume that the parameters deter- t explains the data.
mining the intensity function remain constant. F sl ] e We estimate a 16-dimensional switched Hawkes model of order 6 and a 16-dimensional static
= Hawkes model.
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