

乙丁巴中兴

of the network. However, there remain its limited capacity; (2) the semantic gap between global guidance and low-level features is ignored, and simple merging methods will cause feature aliasing. So we propose GAMS to mine global guidance and SAGG to integrate the global guidance into each decoding layer.

Dual-stream Network Based on Global Guidance for Salient Object Detection

Shuyong Gao¹, Qianyu Guo¹, Wei Zhang¹, Wenqiang Zhang¹, Zhongwei Ji² ¹Department of Computer Science and Technology, Fudan University, Shanghai, China ²ZTE Corporation, Shanghai, China

Method	ECSSD				DUT-OMRON				PASCAL-S				HKU-IS			
	F_{β}^{max}	mF	S_m	MAE												
R ³ Net ₁₈ [13]	0.9248	0.9027	0.9028	0.0555	0.7882	0.7532	0.8172	0.0711	0.8374	0.8155	0.8102	0.1026	0.9096	0.8807	0.8918	0.0478
RAS ₁₈ [14]	0.9211	0.9006	0.8929	0.0564	0.7863	0.7623	0.8141	0.0617	0.8291	0.8125	0.799	0.1013	0.9128	0.8877	0.8874	0.0454
DGRL ₁₈ [15]	0.9224	0.9130	0.9027	0.0407	0.7742	0.7659	0.8059	0.0618	0.8486	0.8355	0.8358	0.0721	0.9103	0.8998	0.8946	0.0356
PiCANet-R ₁₈ [16]	0.9349	0.9023	0.9168	0.0464	0.8029	0.7630	0.8301	0.0653	0.8573	0.8228	0.8537	0.0756	0.9185	0.8808	0.9041	0.0433
BASNet-R ₁₉ [9]	0.9425	0.9274	0.9163	0.037	0.8053	0.7906	0.8362	0.0565	0.8539	0.8344	0.838	0.0758	0.9284	0.9113	0.909	0.0322
PoolNet-R ₁₉ [7]	0.9415	0.9197	0.9173	0.0417	0.8058	0.7822	0.8322	0.0561	0.8648	0.8480	0.8518	0.0716	0.9305	0.907	0.907	0.033
MLMS-R ₁₉ [17]	0.9284	0.9007	0.9111	0.0445	0.7741	0.7455	0.809	0.0636	0.8552	0.8254	0.8442	0.0736	0.9207	0.8891	0.9065	0.0387
AFNet-R ₁₉ [5]	0.9351	0.9157	0.9135	0.0416	0.7972	0.7766	0.8253	0.0574	0.8629	0.8409	0.8494	0.0700	0.9226	0.8998	0.9051	0.0358
EGNet-R ₁₉ [5]	0.9474	0.9288	0.9245	0.0374	0.8155	0.7942	0.8379	0.0529	0.8653	0.8437	0.8519	0.0740	0.9352	0.9122	0.9178	0.0310
GateNet-R ₂₀ [6]	0.9454	0.9197	0.9197	0.0401	0.8181	0.7915	0.8374	0.0549	0.875	0.8518	0.857	0.0676	0.9335	0.9097	0.915	0.0331
MINet-R ₂₀ [18]	0.9475	0.925	0.925	0.0335	0.8099	0.7893	0.8325	0.0555	0.8726	0.852	0.8558	0.0635	0.9349	0.9166	0.9189	0.0285
GCPANet-R ₂₀ [10]	0.9485	0.9261	0.9267	0.0348	0.8118	0.7879	0.8375	0.0563	0.8752	0.8508	0.864	0.0619	0.9380	0.911	0.9202	0.0309
F ³ Net-R ₂₀ [19]	0.9453	0.9242	0.9242	0.0333	0.8133	0.7944	0.8381	0.0526	0.8776	0.8588	0.86	0.0616	0.9366	0.9187	0.9171	0.028
Ours	0.9498	0.9350	0.9259	0.0335	0.819	0.7993	0.8405	0.0544	0.8841	0.8636	0.8648	0.061	0.9406	0.923	0.9236	0.0276

Visual Comparison:

Ablation Studies:

Madal		DUT	S-test		DUT-OMRON				
widder	F_{β}^{max}	mF	S_m	MAE	F_{β}^{max}	mF	S_m	MAE	
baseline	0.8824	0.8538	0.8839	0.0387	0.8039	0.7787	0.8286	0.0607	
+guide	0.8887	0.8618	0.8871	0.0363	0.8062	0.7832	0.8319	0.0561	
guide+nonlocal	0.881	0.8507	0.8832	0.0408	0.8093	0.7783	0.8288	0.0653	
guide+ASPP	0.8879	0.8657	0.8893	0.0367	0.8102	0.791	0.8326	0.0586	
guide+GAMS	0.8896	0.7938	0.891	0.0355	0.8164	0.7938	0.8374	0.0559	
guide+SAGG	0.8918	0.8661	0.8896	0.0362	0.8149	0.7914	0.8355	0.0558	
guide+SAGG+GAMS	0.8955	0.873	0.8944	0.0341	0.819	0.7993	0.8405	0.0544	

A dual-stream network based on global guidance for salient object detection is proposed, in which we design the GAMS to provide accurate multi-scale global guidance and SAGG to seamlessly integrate the guidance into each decoding layer of the network.

Conclusion