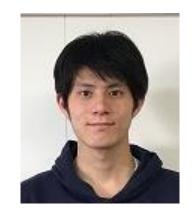


Layer-wise Interpretation of Deep Neural Networks **Using Identity Initialization**



Shohei Kubota (Kyushu Univ.)

Hideaki Hayashi (Kyushu Univ.)

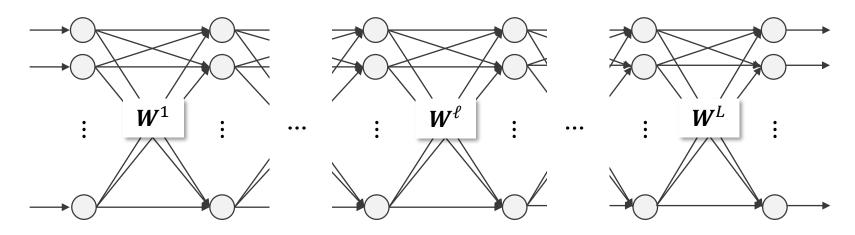
Tomohiro Hayase (Fujitsu Lab.)

ICASSP2021

Metro Toronto Convention Centre

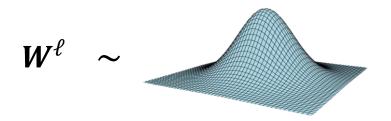
Seiichi Uchida (Kyushu Univ.)

Can identity initialized deep neural nets be trained?



Standard initialization

Random matrix



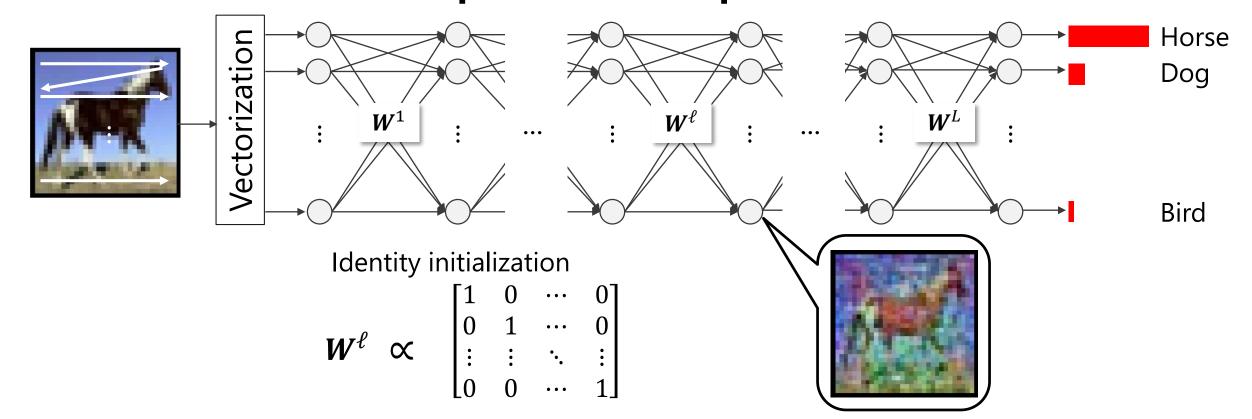
Initialization in this study

Identity matrix

$$\boldsymbol{W}^{\ell} \propto \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

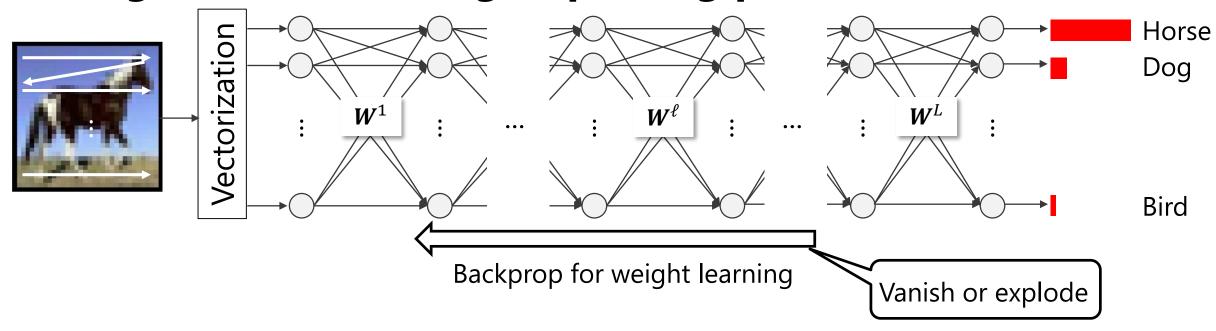
Interpretability of the internal process

- Learned weights are close to the identity matrix
- Intermediate features preserve the input structure



Gradient vanishing and exploding

 Identity-initialized deep neural networks suffer from the gradient vanishing/exploding problems



Investigate the potential of identity initialization

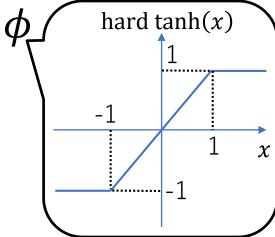
Theory:
 We show a condition under which the identity-initialized deep multilayer perceptron (MLP) prevents gradient vanishing/exploding.

Application:
 We propose an interpretable MLP structure using identity initialization.

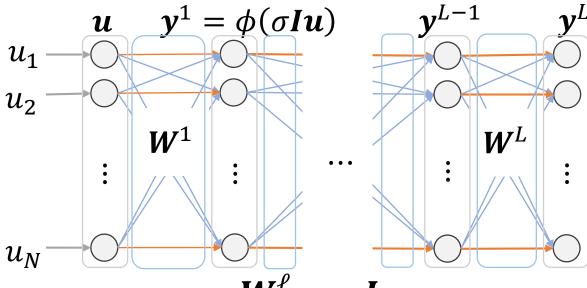
Problem settings

Identity initialization

- MLP of L layers with width N and $W^{\ell} \in \mathbb{R}^{N \times N}$
- Initialization: $W^{\ell} = \sigma I$
- Activation ϕ



• Input u follows $N(0, q^0)$



$$\mathbf{W}^{\ell} = \sigma \mathbf{I}$$

Condition to prevent gradient vanishing/exploding

Dynamical isometry

Singular values of Jacobian J (or eigenvalues of J^TJ)
 concentrate around 1

$$J = \frac{\partial y^L}{\partial u} = D^1 W^1 D^2 W^2 \cdots D^L W^L$$

$$\begin{array}{c} \text{Derivative of the activation function} \\ \text{Input} \end{array}$$

$$\begin{array}{c} \text{the first layer} \end{array}$$

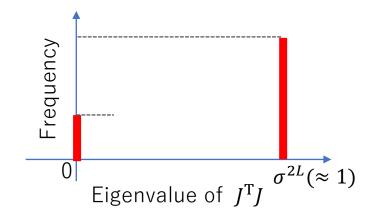
Theoretical result

The eigenvalue distribution is a Bernoulli function

$$\mu_{JJ^{\top}}(\lambda) = \begin{cases} \alpha^{L} \, \delta(\lambda - \sigma^{2L}) - (1 - \alpha^{L}) \, \delta(\lambda) & (\sigma > 1) \\ \alpha^{1} \delta(\lambda - \sigma^{2L}) - (1 - \alpha^{1}) \, \delta(\lambda) & (\sigma \leq 1) \end{cases}$$

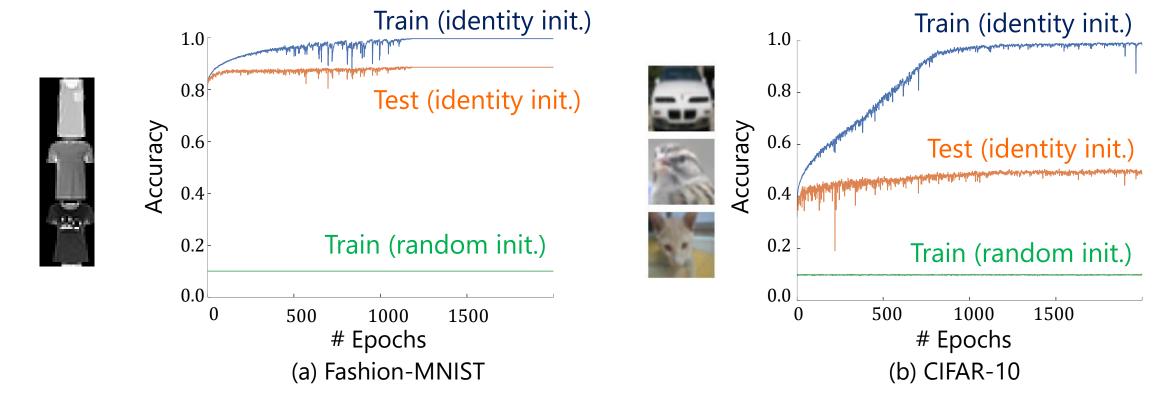
 α^{ℓ} : Constant depending on σ (constant) and q^0 (input variance)

• We can prevent gradient vanishing by setting σ and q^0 appropreately



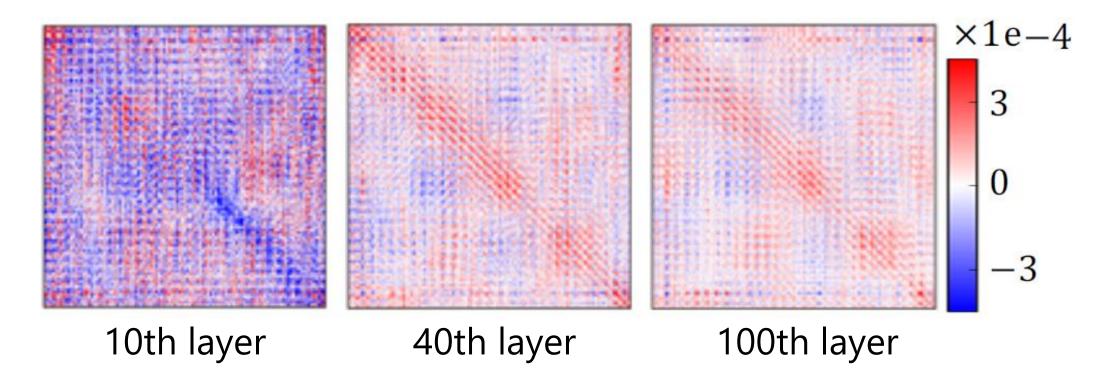
Identity-initialized networks can be trained

- MLP with 100 layers
- Dataset: Fashion-MNIST and CIFAR-10 (10 classes)



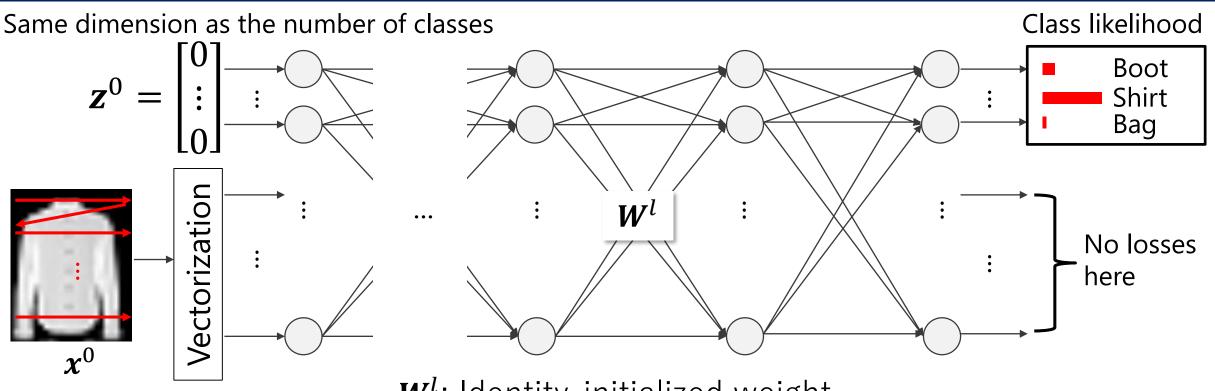
Close to the identity matrix

 Difference of the weight matrix from the identity matrix after training



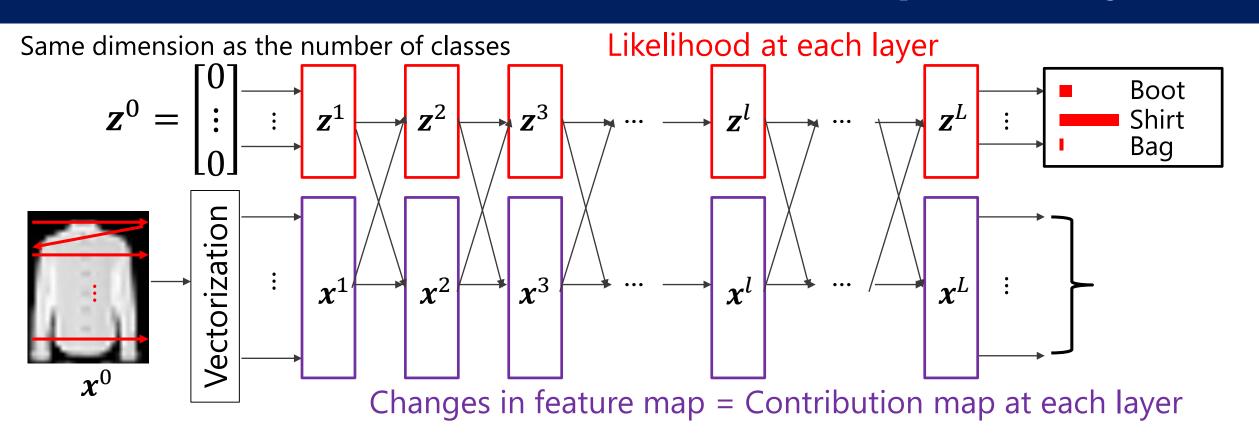
Application

Network structure that enhances interpretability



 \mathbf{W}^{l} : Identity-initialized weight

Network structure that enhances interpretability



Feature map at each layer

 z^{l} : Class likelihood at l-th layer

 x^{l} : Feature map at l-th layer

Emphasize the areas important for classification



Conclusion

Investigate the potential of identity initialization

- Condition for preventing the vanishing/exploding gradients
- Network structure enhancing interpretability

Future work

- Analysis of changes in feature values during learning
- Application to other structures such as convolutional neural networks

Layer-wise Interpretation of Deep Neural Networks Using Identity Initialization

Shohei Kubota, Hideaki Hayashi, Tomohiro Hayase, and Seiichi Uchida

Poster Session

MLSP-42: Neural Network Pruning

Friday, 11 June from 11:30 to 12:15 (EDT)