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Motivation

Can identity initialized deep neural nets be trained?
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Merit of identity initialization

Interpretability of the internal process

Learned weights are close to the identity matrix
Intermediate features preserve the input structure
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Difficulty

Gradient vanishing and exploding

Identity-initialized deep neural networks suffer from
the gradient vanishing/exploding problems
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Purpose

Investigate the potential of identity initialization

Theory:

We show a condition under which the identity-initialized
deep multilayer perceptron (MLP) prevents gradient
vanishing/exploding.

Application:
We propose an interpretable MLP structure using
identity initialization.



Problem settings

Identity initialization

MLP of L layers with width N and W* € RV*N

Initialization: W* = oI
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Condition to prevent gradient vanishing/exploding

Dynamical isometry

Singular values of Jacobian J (or eigenvalues of J'))
concentrate around 1
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Theoretical result

The eigenvalue distribution is a Bernoulli function
() = als(A —o*l)— (1 —at) (1) (o > 1)
T T gl — o2 — (1 —ad) 6(1) (o < 1)

a’: Constant depending on ¢ (constant) and q° (input variance)

We can prevent gradient vanishing
by setting 0 and ¢° appropreately
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Verification of trainability

Identity-initialized networks can be trained

MLP with 100 layers
Dataset: Fashion-MNIST and CIFAR-10 (10 classes)
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Weight matrix after learning

Close to the identity matrix

Difference of the weight matrix from the identity matrix
after training
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Application

Network structure that enhances interpretability

Same dimensio_n as the number of classes Class likelihood
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Wt: Identity-initialized weight



Application

Network structure that enhances interpretability

Same dimension as the number of classes
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Feature map at each layer

Emphasize the areas important for classification
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Conclusion

Investigate the potential of identity initialization
Condition for preventing the vanishing/exploding gradients
Network structure enhancing interpretability

Future work
Analysis of changes in feature values during learning

Application to other structures such as convolutional neural
networks
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