
Layer-wise Interpretation 

of Deep Neural Networks 

Using Identity Initialization 

Shohei Kubota

(Kyushu Univ.)

Hideaki Hayashi

(Kyushu Univ.)

Tomohiro Hayase

(Fujitsu Lab.)

Seiichi Uchida

(Kyushu Univ.)



2

Standard initialization

Motivation

Can identity initialized deep neural nets be trained?

 Identity matrix Random matrix

Initialization in this study
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 Learned weights are close to the identity matrix

 Intermediate features preserve the input structure 

Merit of identity initialization

Interpretability of the internal process

Horse

Dog

BirdV
e
ct

o
ri

za
ti

o
n

⋮ 𝑾ℓ
⋮ ⋮ ⋮

⋮

⋮𝑾1
⋮ ⋮𝑾𝐿⋮

𝑾ℓ ∝

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

Identity initialization



4

 Identity-initialized deep neural networks suffer from 

the gradient vanishing/exploding problems

Difficulty

Gradient vanishing and exploding

Backprop for weight learning
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 Theory: 

We show a condition under which the identity-initialized 

deep multilayer perceptron (MLP) prevents gradient 

vanishing/exploding.

 Application: 

We propose an interpretable MLP structure using 

identity initialization.

Purpose

Investigate the potential of identity initialization
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 MLP of 𝐿 layers with width 𝑁 and 𝑾ℓ ∈ ℝ𝑁×𝑁

 Initialization: 𝑾ℓ = 𝜎𝑰

 Activation 𝜙

 Input 𝑢 follows 𝑁(0, 𝑞0)

Problem settings

Identity initialization
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 Singular values of Jacobian 𝑱 (or eigenvalues of 𝑱T𝑱) 
concentrate around 1

Condition to prevent gradient vanishing/exploding

Dynamical isometry

𝑱 =
𝜕𝒚𝐿

𝜕𝒖
= 𝑫1𝑾1𝑫2𝑾2⋯𝑫𝐿𝑾𝐿

Input
Derivative of the activation function 

at the 𝐿-th layer
Weight of 

the first layer

Output
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Theoretical result

 The eigenvalue distribution is a Bernoulli function

𝜇𝐽𝐽⊤ 𝜆 = ൝
𝛼𝐿 𝛿 𝜆 − 𝜎2𝐿 − 1 − 𝛼𝐿 𝛿 𝜆 (𝜎 > 1)

𝛼1𝛿 𝜆 − 𝜎2𝐿 − 1 − 𝛼1 𝛿 𝜆 (𝜎 ≤ 1)

 We can prevent gradient vanishing

by setting 𝜎 and 𝑞0 appropreately
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𝛼ℓ: Constant depending on 𝜎 (constant) and 𝑞0 (input variance)
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 MLP with 100 layers

 Dataset: Fashion-MNIST and CIFAR-10 (10 classes)

Verification of trainability

Identity-initialized networks can be trained
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 Difference of the weight matrix from the identity matrix 

after training

Weight matrix after learning

Close to the identity matrix

10th layer 40th layer 100th layer
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Network structure that enhances interpretability
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𝑾𝑙: Identity-initialized weight
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Network structure that enhances interpretability
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Changes in feature map = Contribution map at each layer
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13Feature map at each layer

Emphasize the areas important for classification

𝑥80𝑧80 𝑥98𝑧98𝑥0: class 6, shirt𝑧0 𝑥50𝑧50

0: T-shirt

1: Trouser

2: Pullover

3: Dress

4: Coat

5: Sandal

6: Shirt

7: Sneaker

8: Bag

9: Ankle boot
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𝑧𝑙: Class likelihood at 𝑙-th layer

𝑥𝑙: Feature map at 𝑙-th layer



14

Conclusion

 Investigate the potential of identity initialization

 Condition for preventing the vanishing/exploding gradients

 Network structure enhancing interpretability

 Future work

 Analysis of changes in feature values during learning

 Application to other structures such as convolutional neural 

networks
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