

Visual Information Laboratory

Abstract

- 1. Detecting ships and their corresponding wakes has always been a significant topic in terms of marine applications.
- 2. In this study, the ship wake detection problem is addressed as a Radon transform based inverse problem with Cauchy and DT-CWT regularizations.
- 3. The results show a successful detection performance of up to **90.91**%

The Proposed Method

Since ship wakes have linear features, SAR image formation can be expressed in terms of its Radon transform as Y = CX + N

Where Y is the noisy SAR image, X represents the data in the Radon domain. Also, N is additive noise, and the operator $C = R^{-1}$ is the inverse Radon transform. The problem is solved to obtain an estimation for X via the minimization problem of

 $\hat{X} = \arg\min_{X} \{ \|Y - CX\|_{2}^{2} - \log(\gamma/(\gamma^{2} + X^{2})) - \lambda \|\mathcal{B}X\|_{1} \}$

Where \mathcal{B} is forward DT-CWT operator.

Algorithm 1 is based on forward-backward (FB) splitting algorithm to obtain the optimized \hat{X} .

Algorithm 1: Algorithmic representation of Cauchy and DT-CWT Proximal Splitting

1: Input: SAR imagery Y and coefficients μ , γ , λ 2: Output: Radon image X 3: Set: i = 0 and $X^{(0)} = \{0\}$ 4: do 5: $Z^{(i)} = X^{(i)} - \mu \left(C^T \left(C(X^{(i)}) - Y \right) - \nabla \left(log \left(\frac{\gamma}{\gamma^2 + X^{(i)^2}} \right) \right) \right)$ 6: $W = soft \{ \mathcal{B}(Z^{(i)}), \ \mu * \lambda \}$ 7: $X^{(i)} = \mathcal{B}^{-1}(W)$ 8: i + +9: while $\varepsilon^{(i)} > 10^{-3} \text{ or } i < maxIter$

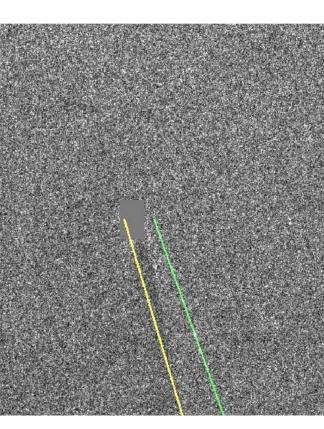
Exploiting The Dual-Tree Complex Wavelet Transform for Ship Wake Detection in SAR Imagery

Wanli Ma^{1,2}, Alin Achim¹, Oktay Karakus¹ ¹Visual Information Lab University of Bristol ²Insert Your Current Affiliation here

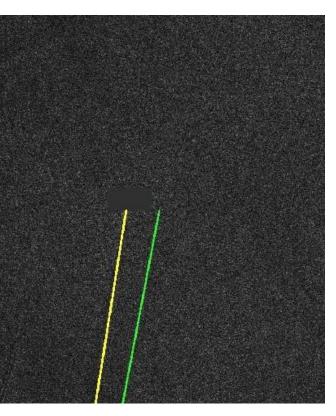
Why DT-CWT?

DT-CWT can significantly reduce the translation sensitivity and improve the direction selectivity of Discrete Wavelet Transform. In this case, implementing DT-CWT in Radon domain of SAR imagery would be useful to enhance linear features of ship wakes.

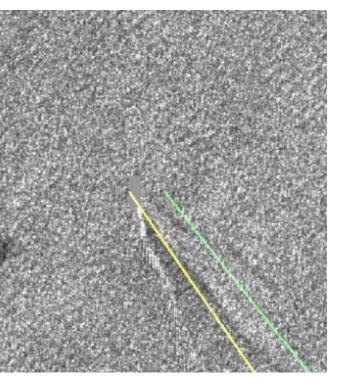
Detection Performance for All SAR Images

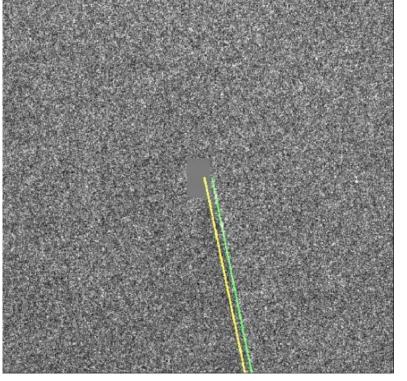

	TP	TN	FP	FN	Accuracy
Graziano et. al. [1]	32.73%	38.18%	25.45%	3.64%	70.91%
GMC [2]	43.64%	34.55%	18.18%	3.64%	77.27%
TV	36.18%	33.64%	26.36%	1.82%	70.91%
Cauchy [3]	37.27%	47.27%	10.00%	6.36%	84.55%
Proposed Cauchy + DTCWT	41.82%	48.18%	5.45%	5.45%	90.91%

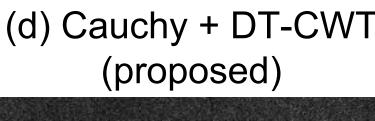
(i) TerraSAR-X

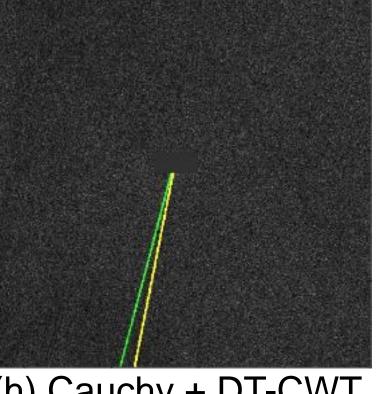

(a) Sentinel-1

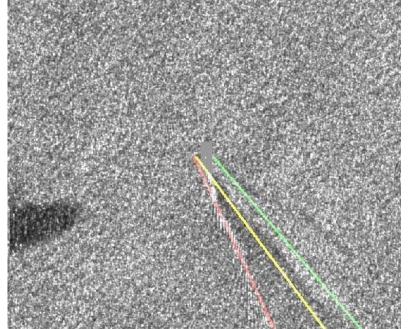
(j) GMC [2]


(b) GMC [2]






(g) Cauchy [3]


(k) Cauchy [3]

(h) Cauchy + DT-CWT (proposed)

(I) Cauchy + DT-CWT (proposed)

Pre-processing of SA Obtain centered and image Y in the spatia

Step 3:

3.1 Restriction of rec Radon images to restricted images

3.2 Detect Turbulent Narrow-V wake in t domain

3.3 Detect second wake and Kelvin a Radon domain

SAR Images and Visible Wakes

Images	Turbulent	1 st Narrow	2 nd Narrow	1 st Kelvin	2 nd Kelvin
Sentinel-1		\checkmark	X	X	X
ALOS2	\checkmark	\checkmark	X	X	X
TerraSAR-X		\checkmark	X	\checkmark	X

2020.

Detection Processing

	Step 2:		
R images: 1 masked al domain	Use inverse problem Y = CX+N to reconstruct the Radon image $\hat{X}_{Cauchy-DTCWT}$ by the Algorithm 1.		
	Step 4:		
onstructed obtain \widehat{X}_{res}	4.1 Inverse Radon transform of detected bright(dark) points		
t and first he Radon	4.2 Retain half lines and estimate right indexes		
Narrow-V ms in the	4.3 Validate and discard false wake detection		

Reference

[1] M. Graziano, M. D'Errico and G. Rufino, "Wake Component Detection in X-Band SAR Images for Ship Heading and Velocity Estimation", Remote Sensing, vol. 8, no. 6, p. 498, 2016.

[2] O. Karakus, I. Rizaev, and A. Achim, "Ship Wake Detection in SAR Images via Sparse Regularization," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1665–1677, 2020.

[3] O. Karakus, and A. Achim, "On solving SAR imaging inverse problems using non-convex regularization with a Cauchy-based penalty, "IEEE Transactions on Geoscience and Remote Sensing,