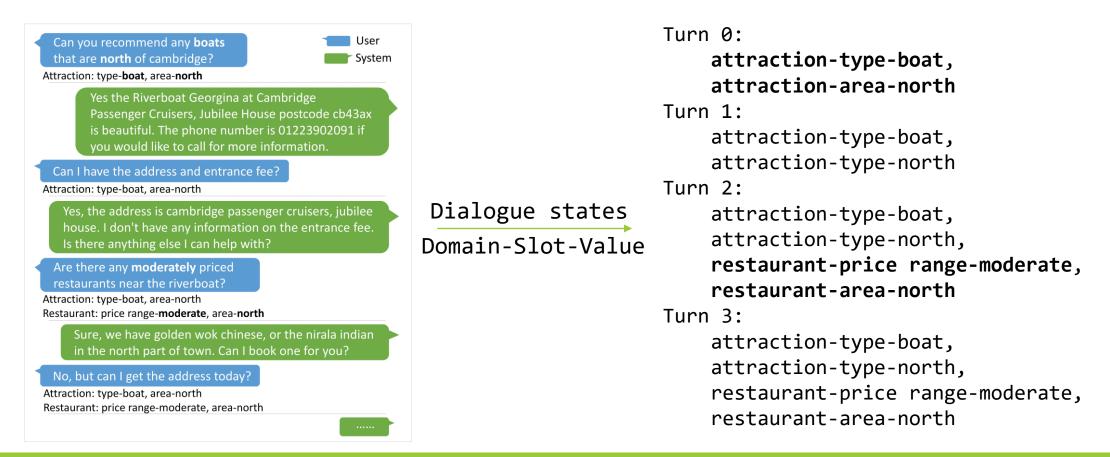
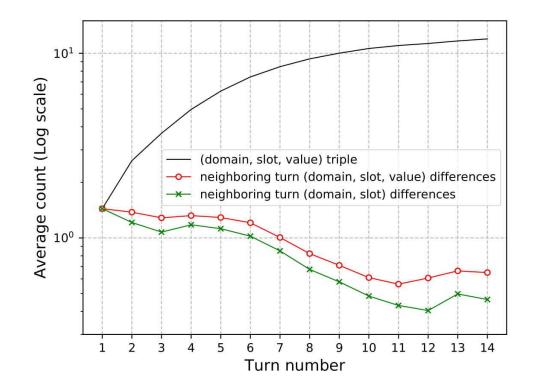


PROGRESSIVE DIALOGUE STATE TRACKING FOR MULTI-DOMAIN DIALOGUE SYSTEMS


ICASSP 2021

Jiahao Wang*, Minqian Liu[†] and Xiaojun Quan^{*}

*Sun Yat-sen University †South China University of Technology


1. Background

Dialogue State Tracking (Multi-Domain)

2. Motivation

Two observations in MultiWOZ dataset

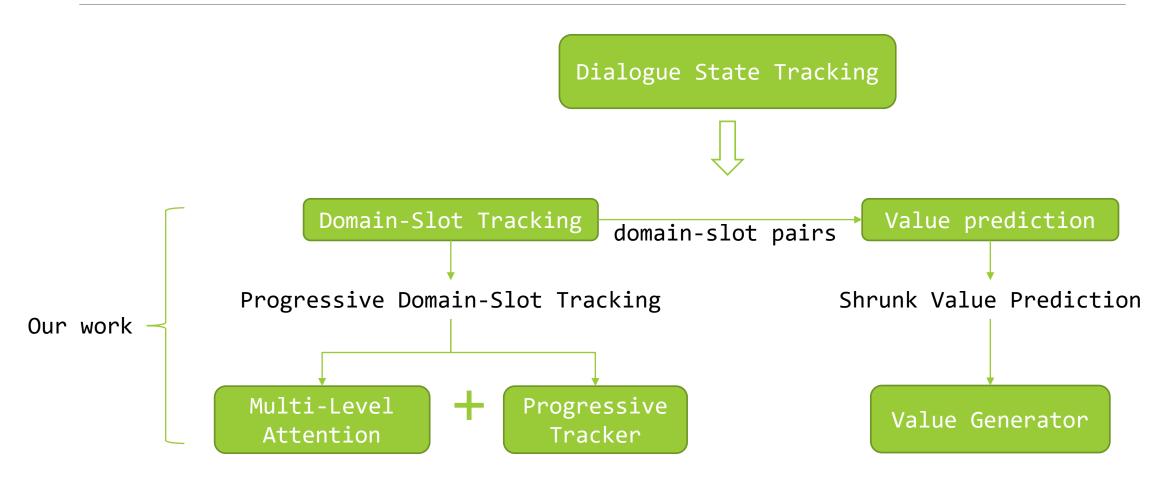
The domain-slot-value triples increase with turns

Differences of domain-slot-value triples between neighboring turns are small

2. Motivation

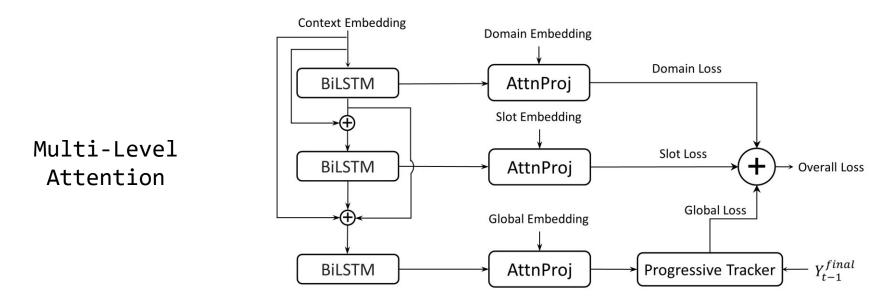
Two observations in MultiWOZ dataset -- Formalization

• $B^{(t)} = \{b_1^{(t)}, b_2^{(t)}, \dots, b_m^{(t)}\}$: Dialogue state at the *t*-th turn • $b_i^{(t)}$: *i*-th domain-slot pair with label from {pointed, dontcare, none} • $\nabla^{(t)} = \{\delta_1^{(t)}, \delta_2^{(t)}, \dots, \delta_m^{(t)}\}$: Changes from $B^{(t-1)}$ to $B^{(t)}$


$$\delta_i^{(t)} = f(x) = \begin{cases} b_i^{(t)}, & b_i^{(t)} \neq b_i^{(t-1)} \\ \emptyset, & b_i^{(t)} = b_i^{(t-1)} \end{cases}$$

Accumulating state triples:

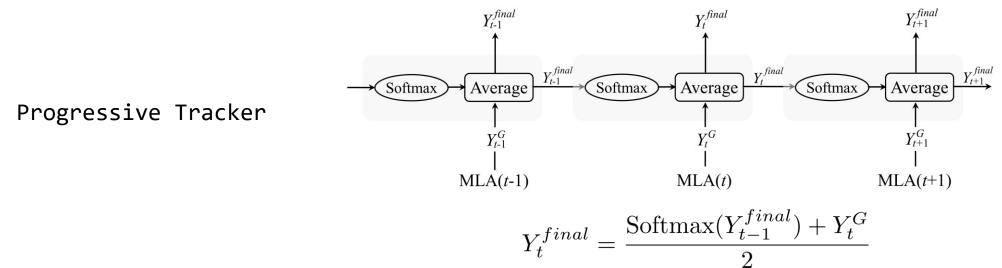
For most utterances: $|B_{pointed}^{(t-1)}| < |B_{pointed}^t|$


Adjacent state dependencies: $\Delta^{(t)}$ is small

3. Method

3. Method

Progressive Domain-Slot Tracking



We adopt the attention mechanism on domain, slot, and global (combination of domains and slots) levels

- We use three levels of attention to capture information of different levels
- We compute the loss of each level separately to help optimize the module

3. Method

Progressive Domain-Slot Tracking

Inspired by the two observations:

- We design a progressive domain-slot tracker to make use of the predictions from the previous turn
 - Progressive tracking allows the model to focus more on the change between adjacent turns
 - We adopt a Softmax layer as a smoothing operation to reduce the risk of error propagation

4. Results

Joint Goal Accuracy

Model	MultiWOZ 2.0 Acc. (%)	MultiWOZ 2.1 Acc. (%)
GLAD [2]	35.57	-
DST Reader [17]	39.41	36.4
COMER [9]	45.72	-
TRADE [8]	48.62	45.6
NADST [18]	50.52	49.0
SAS [19]	51.03	-
DST-SC [20]	52.24	49.6
PRO-DST (Ours)	51.48	49.9

Experiments on MultiWOZ show that our method achieves promising results

4. Results

Ablation Study

Row	Model	Domain-Slot	Goal
		Acc.	Acc.
1	Our Model	58.06	49.89
2	 – output of previous turn 	56.28	48.4
3	 smoothing of previous-turn output 	51.14	44.75
4	 domain&slot attention module 	47.92	41.99
5	 learnable domain&slot emb. fixed domain&slot emb. 	58.06	49.80

- The predictions in the previous turn effectively improve the performance, but the smoothing operation is critical
- The information in the domain and slot levels improves the performance significantly

5. Discussion

- The two observations can direct further research on developing more accurate domain-slot tracker, e.g., utilizing large-scaled pretrained language model.
- The three-level attentions enables finer-grained modeling of domain-slot predictions and can be extended to more complicate dialogue state ontology setting.
- The progressive domain-slot tracking mechanism can be improved to focus more on the state changes between neighboring turns.

Thank you