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Abstract

Considered the problem of Federated Learning (FL) under non-i.i.d data setting

Provided an improved estimate of the empirical loss at each node by using a weighted

average of losses across nodes with a penalty term

Assigned uneven weights to different nodes by taking a Bayesian approach to the problem

where learning for each node is cast as maximizing the likelihood of a joint distribution of

losses for a given neural network of a node, by using data across nodes

Provided a PAC learning guarantee on the objective function which revealed that the true

average risk is no more than the proposed objective and the error term

Leveraged this guarantee to propose an algorithm called Omni-Fedge

Using MNIST and Fashion MNIST data-sets, we showed that the performance of the

proposed algorithm is significantly better than existing algorithms

Index Terms – Federated Learning, Neural Network, Bayesian Approach, Distributed Machine

Learning, PAC Learning.

Introduction and Problem Setting

We address the problem of improving FL performance with non-i.i.d data

We consider a federated system with N edge-devices that communicate with one

federating server (FS)

We assume that the data points are independent but not necessarily identically distributed

across edge-devices

Further, we assume that the data at edge-device i ∈ {1, . . . , N} is sampled from a

distribution Di

Neural network weights are divided into two parts, viz, shared (θ(sh)) and task-specific (θ(i))

Figure: Federated Setup

Figure: Neural Network

Motivation

Bayesian Approach

Theoretical Guarantees

Definition: log − exp Complexity

Let θ(i) and θ(sh) be a family of weights corresponding to task/edge specific and shared neural

networks, respectively. The log − exp complexity of the neural network with respect to the

distribution Q
θ(i),θ(sh) (Q for short) for i = 1, 2, . . . , N is defined as

Ri(θ) := logEQ sup
θ(i),θ(sh)

exp
{
Ez∼Di

Li(z, θ(i), θ(sh))
}

ΠN
j=1ÊLj(zj, θ(i), θ(sh))

. (1)

Theorem: PAC bound

For a given neural network θ, and the log − exp complexity, the following bound holds with a

probability of at least 1 − δ, (δ > 0)

inf
θ

E
zi∼Di

{Li(zi, θ)} ≤ inf
θ(sh)

[
Obji(θ(sh)) + Ri(θ) + sup

θ(i),θ(sh),ωi

KL(Q||P ) + lmax

√√√√√ N∑
j=1

ω2
ij

2n2
j

log
(

1
δ

)
−N

]
,

where KL(Q||P ) is the KL-divergence between two joint distributions Q and P ,

Obji(θ(sh)) := inf
ωi

N∑
j=1

[
ωij inf

θ(i)
ÊLj(zj, θ(i), θ(sh)) − log ωij

]
. (2)

Please refer to the paper for proof

Algorithm

Experimental Results

(a) MNIST non-i.i.d (b) MNIST i.i.d

(c) FMNIST non-i.i.d (d) FMNIST i.i.d

Figure: Plots of Average Accuracies vs Communication Rounds for Omni-Fedge and FedSGD
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