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Abstract
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= Considered the problem of Federated Learning (FL) under non-i.i.d data setting

= Provided an improved estimate of the empirical loss at each node by using a weighted
average of losses across nodes with a penalty term

= Assigned uneven weights to different nodes by taking a Bayesian approach to the problem
where learning for each node is cast as maximizing the likelihood of a joint distribution of
losses for a given neural network of a node, by using data across nodes

= Provided a PAC learning guarantee on the objective function which revealed that the true
average risk is no more than the proposed objective and the error term

= Leveraged this guarantee to propose an algorithm called Omni-Fedge

= Using MNIST and Fashion MNIST data-sets, we showed that the performance of the
proposed algorithm is significantly better than existing algorithms

Index Terms - Federated Learning, Neural Network, Bayesian Approach, Distributed Machine
Learning, PAC Learning.

Introduction and Problem Setting

= We address the problem of improving FL performance with non-i.i.d data

= We consider a federated system with N edge-devices that communicate with one
federating server (FS)

= We assume that the data points are independent but not necessarily identically distributed
across edge-devices

= Further, we assume that the data at edge-device i € {1,..., N} is sampled from a
distribution D;

= Neural network weights are divided into two parts, viz, shared (H(Sh)) and task-specific (9@)
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Theoretical Guarantees

Definition: log — exp Complexity

Let 01 and (31 be a family of weights corresponding to task/edge specific and shared neural
networks, respectively. The log — exp complexity of the neural network with respect to the
distribution Qi) g(sh) (Q for short) fori=1,2,..., N is defined as

exp {E.op, Li(z, 00, 00)) |
Ri(0) :=logEg sup

n . (1)
o) g(sh) T EL;(z;, 000, 0(5))

Theorem: PAC bound

For a given neural network 0, and the log — exp complexity, the following bound holds with a
probability of at least 1 — 6, (0 > 0)
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Algorithm

Algorithm 1: Omni-Fedge

1 Omni—Fedge ():

2 INITIALIZE @57 and BRoADCAST (BC) to all nodes
3 fort € {1,2,...... } do
4 for: =1,2,..., N do
5 6‘?} = arg mingu) EL;(2z;, 89, 0(7)
6 Each device ¢ BCs 9?} to all other nodes
Il =1,2,..., N through FS.
7 COMPUTE AND SEND EL;(z;, 80, @(sh))
to all nodes.
8 Minimize—Qbjective ()
9 |_ to get w; for all z.
10 At each node, CcOMPUTE

E?’-r:l w;ive(sh]ELi(zi: H{J]: B(Sh}} and
BC it to all nodes through FS.

11 Perform GRADIENT UPDATE

sh sh
9§+L} = 9;: ) —

N N X -
~ ( 2. 2 wiVaemEL(z, ), g{sh)))
=1 53=1 t

ncom,.},igi}, where ")réﬂ =

12 Go TO step 3.

13 Minimize—0Qbjective ():
14 COMPUTE w] =

arg ming,, ( Z?’;l wz-j]AELj (Zj, o) , g(sh)} _

log TT;—, Wa’j)

Experimental Results
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Figure: Plots of Average Accuracies vs Communication Rounds for Omni-Fedge and FedSGD
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where KL(Q||P) is the KL-divergence between two joint distributions @ and P,
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Please refer to the paper for proof
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