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Theoretical Support

1. The dependence between unified embedding P and embedding of each view F(*) is measured by Hilbert Schmidt
Independence Criterion (HSIC) [1]. 2. A cluster indicator matrix Y is recovered from the unified embedding P via
estimating a rotation matrix R € R“*%. Considering the orthogonality of P, we transform Y into its orthogonal
counterpart Y(YTY)_%. Then cluster indicator matrix Y can be recovered by finding a rotation matrix R to minimize

the squared Fuclidean distance between PR and Y(YTY)_%. 3. To guarantee the diversity of different views, a weight
is introduced for each view. Overall, the objective tunction of the proposed DGMC is as follows:

The Lagrangian function of problem (2) is as follows:
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where A(P,Y, R, A) is the penalty term for the constraints in problem (2). Let the derivative of problem (8) w.r.t P be
zero, and according to the chain-rule, we have

v

max S T (HPPTHFOF® Y _\Y(YTY) ? - PR|I2 st P P=-IYecInd RTR=1
( F ’ 9 ,

P.Y.R

v=1

(1)

where Ind defines the set of cluster indicator matrices, A is a balance parameter, a(?) is the pre-weight of the v-th view.

Contributions

A novel approach named Dependence-Guided Multi-
view Clustering (DGMC) is proposed. The main contri-
butions of this paper are summarized as follows.

e The proposed model enhances the dependence be-
tween unified embedding learning and clustering, as
well as increases the dependence between unified em-
bedding and embedding of each view.

A joint framework for unified embedding learning and
clustering is proposed.

A unified embedding can be learned from differ-
ent views in Reproducing Kernel Hilbert Spaces
(RKHSs) to capture the high-order and non-linear
dependence among these views.

Implicit-weight learning mechanism enhances the di-
versity of different views.

An Equivalent Model

In this paper, an implicit-weight learning mechanism
is introduced to smartly learn o(?). To this end, we give
the Remark that problem (1) is equivalent to the following
problem (2) with implicit weights:
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where r > 1 controls the curvature of weighted-learning
curve. Suppose the solutions of problems (1) and (2) are
(P.,Y., R,) and (Py, Yy, Ry), respectively. According to
the KKT condition w.r.t P of problem (1), it can be easily
verified that (Py, Yy, Ro) = (P,,Y,, R,) if a(¥) is calcu-

lated as o) = r - (Te(H P, Py HF® F®) ' )yr—1

Nevertheless, it is hard to determine weights without prior knowledge.

Optimization
1. When P and R are fixed, problem (1) becomes

in |Y(YTY) 2 — PR|2.
Jun [[Y (YY) R

(3)
Further, by simply deriving problem (3), we have

(YY) Y ' G). (4)

max
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Let Q =Y 'Y, then qj = 27],\;1 Yi1Yij. oSince Y € Ind,
yi1Yi; = 0 and q;; = 0 hold if [ # j. Thus Q_% is a diagonal
matrix with the [-th diagonal element as (y,' yl)_%. Then
problem (4) becomes
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Since this problem is independent among different rows, we
can solve Y row by row. Given an optimal Y, to update the
i-th row y*, all we need to consider is the increment of the
objective function value from y;; = 0 to y;; = 1. Therefore,

Problem (5) can be solved by coordinate descent method.
2. When P and Y are fixed, problem (1) becomes

in |[Y(Y'Y) % - PR|?
Ln ([Y(Y'Y) 1%

(6)

which is the classical orthogonal procrustes problem. Then
a closed-form solution to Ris R = UV ', where USV '
is the SVD of (PTY (YY) 2).

3. When Y and R are fixed, problem (1) becomes

max Tr(P'AP) - \Tr(P'B),
PTP=1I

(7)
where A = HYV_  w@®WFOFO ' 'H Z =YY TY) 3,
B =ZR'. Problem (7) is the typical Quadratic Problem
on the Stiefel Manifold (QPSM), which can be solved by

an efficient algorithm [2].
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oP oOP

= r . (Te(HPPTHF®F® "))~ ( Eq. (10) ), then Eq. (9) becomes

_ AP Y RA) _ 0, which is the KK'T condition w.r.t P of prob-

oP

lem (1) by letting o{*) = w(¥). Overall, problem (2) can be optimized by iteratively performing the two steps: Step 1.
update w®) by Eq. (10); Step 2. update (P,Y, R) by letting a(*) = w(*) and solving problem (1). Since there are three

Experiment Results

optimization variables in problem (1), we adopt alternative iterative optimization strategy to optimize them.

The following Table gives the clustering results of the proposed DGMC and related four methods in terms of four
metrics on three real-world datasets. The proposed DGMC shows large advantages over other methods in all the cases.
Moreover, The following Figure shows the convergence curve of the proposed Algorithm on SCENE dataset. We can be
see that the proposed Algorithm can converge within 3 iterations.

Dataset

Metric AMGL MEA MLAN MVGL DGMC

ACC

NMI

ARI
F

MSRC

0.8571
0.7623
0.7081
0.7494

0.8714
0.73834
0.7199
0.7597

0.6952
0.6969
0.0332
0.6089

0.8714
0.7731
0.7152
0.7560

0.9048
0.8102
0.7861
0.8160

1.24

ACC

NMI

ARI
F

BBCSport

0.7206
0.6867
0.5832
0.7088

0.4963
0.2347
0.1492
0.4546

0.7279
0.7146
0.6069
0.7244

0.7169
0.6858
0.5897
0.7098

0.9062
0.8230
0.8510
0.8881
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ACC

NMI

ARI
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SCENE

0.08956
0.5017
0.3821
0.4820

0.6031
0.5042
0.3907
0.4901

0.9339
0.4596
0.3158
0.4377

0.3251
0.2093
0.0728
0.2680

0.6763
0.5282
0.4538
0.5243
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Algorithm Description

Algorithm to solve problem (2).

Input: Initialized P,R. X F® 1V X\ r

while not converge do

Output: Y

ving probl
'ving probl
ving probl

1. Update w(¥) via Eq. (10).
2. Update Y via so.
3. Update R via so!
4. Update P via so.

|terations
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