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Background

.

• Multiview clustering is clustering for multiview data.
• Multiview data can be easily obtained from multiple sources or different feature subsets.
• For example, identify a person by face, ngerprint, signature or iris data.
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• A survey on multiview learning can be found in [1]..
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Related Work

.

PwMC [2]:

min
{αi}v

i=1,S

v∑

i=1

αi∥S − A(v)∥2
F + λα2

i

s.t. αi ≥ 0, αT 1 = 1, sij ≥ 0, si1 = 1, rank(LS) = n − c

• Conventional methods learn a uni ed similarity S ∈ Rn×n.
• en perform spectral clustering on the uni ed S.
• Conduct eigenvalue decomposition in every iterative step, O(n3).

Spectral Rotation [3, 4]:

min
Y,R

∥Y − FR∥2
F

s.t. Y ∈ Ind, RT R = I,

• For single view spectral clustering.
• A post-processing approach to get indicators from embeddingF ∈ Rn×k.
• Very fast, comparable to K-means..
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Procrustes Average

.

F F F F
Estimate v Rotations Simultaneously:

min
Y,{R(i)}v

v∑

i=1

∥Y − F (i)R(i)∥2
F

s.t. Y ∈ Ind,
(
R(i)

)T

R(i) = I, ∀i = 1 . . . v,

• Very fast, comparable to K-means.
• Clear geometric meaning.
• Same weights for different views.
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Adaptively Weighted Procrustes

.

eorem 1. Suppose acc
def
= 1 − 1

2n∥Y̆ − Y ∥2
F . en, we have

acc ≤ 1 −
√

2

4n

(
max

1≤i≤v
∥Y̆ − F (i)R(i)∥2

F − ∥Y − F (i)R(i)∥2
F

)
,

where Y̆ ∈ Ind is the oracle clustering indicator matrix.
• PA is not optimal for multiview clustering since it does not take the clus-
tering capacity differences between different views into consideration.

• We propose following Adaptively Weighted Procrustes (AWP) scheme to
overcome this de ciency.

AWP:
Y∗, {R

(i)
∗ }v = argmin

Y,{R(i)}v

v∑

i=1

1

pi
∥Y − F (i)R(i)∥2

F

s.t. Y ∈ Ind,
(
R(i)

)T

R(i) = I,

where pi
def
= ∥Y∗ − F (i)R

(i)
∗ ∥F .

Equivalent Form:

min
Y,{R(i)}v

v∑

i=1

∥Y − F (i)R(i)∥F

s.t. Y ∈ Ind,
(
R(i)

)T

R(i) = I, ∀i = 1 . . . v,

Algorithm (alternating minimization):
Input: {F (i) ∈ Rn×k}v, initial Y ∈ Rn×k

pi = 1/v, ∀i = 1 . . . v
R(i) = I, ∀i = 1 . . . v
repeat
update R

(i)
+ = U (i)

(
V (i)

)T
,
(
F (i)

)T
Y = U (i)Σ(i)

(
V (i)

)T

update Y with y+
ij =

{
1 j = argmax

k

[∑v

i=1
F (i)R(i)/pi

]
k

0 otherwise.

update {pi}v with ∥Y −F (i)R(i)∥F∑v
j=1 ∥Y −F (j)R(j)∥F

until converge
Output: indicator matrix Y ∈ Rn×k

Computational Complexity: O(nk2t)..
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Clustering Performance

.

Caltech 101 Handwritten Numbers NUS WIDE ORL Face MSRC

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

SR(best) 0.5567 0.3842 0.6028 0.8304 0.8634 0.8792 0.2073 0.0997 0.2055 0.6746 0.7598 0.7146 0.6584 0.6136 0.6122
MLAN 0.5339 0.4716 0.6660 0.9530 0.9190 0.9530 0.2454 0.1199 0.2604 0.7775 0.8846 0.8250 0.6810 0.6299 0.7333
MVSC 0.6211 0.5826 0.7293 0.8825 0.8627 0.8825 0.2221 0.1069 0.2408 0.7825 0.9059 0.8275 0.8571 0.7385 0.7543
RMSC 0.4086 0.5154 0.7347 0.7720 0.7073 0.7720 0.2238 0.1013 0.2429 0.5875 0.7752 0.6275 0.8348 0.6265 0.7434
SwMC 0.5735 0.5108 0.7213 0.8505 0.8760 0.8895 0.2426 0.1223 0.2392 0.7650 0.8989 0.8250 0.7095 0.7744 0.8576
PA 0.6567 0.6601 0.7850 0.9580 0.9214 0.9580 0.2717 0.1386 0.2892 0.8000 0.9115 0.8305 0.8905 0.7875 0.8905
AWP 0.6639 0.6760 0.7909 0.9725 0.9356 0.9725 0.2838 0.1445 0.2904 0.8000 0.9142 0.8350 0.8952 0.8021 0.8952.

.

Computational Time

.

Datasets SR MLAN MVSC RMSC SwMC PA AWP

Caltech 101 1.734 34.515 66.197 346.493 228.452 12.036 12.057
Handwritten Numbers 0.924 20.122 38.719 187.697 100.071 6.887 6.892
NUS WIDE 2.055 39.668 55.574 312.770 115.521 11.673 11.790
ORL Face 0.049 0.549 0.333 2.345 1.726 0.156 0.162
MSRA 0.019 0.118 0.153 0.577 0.562 0.053 0.058.

.

Convergence Curve

.
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Conclusion

.

• We propose an extension of SR for multiview data with PA and show its
de ciency. Furthermore, an Adaptively Weighted Procrustes technique is
proposed to overcome this de ciency.

• e proposed PA and AWP are parameter-free clustering models, which
makes them more applicable than other approaches in the literature.

• An efficient optimization strategy with complexity analysis and conver-
gence guarantee to solve the AWP is provided.

• Experimental results show that both PA and AWP achieve better per-
formance than conventional compared state-of-the-art approaches. Em-
pirical comparisons also show the promising efficiencies of the proposed
methods.
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Problem Formulation

1. The dependence between unified embedding P and embedding of each view F (v) is measured by Hilbert Schmidt
Independence Criterion (HSIC) [1]. 2. A cluster indicator matrix Y is recovered from the unified embedding P via
estimating a rotation matrix R ∈ RC×C . Considering the orthogonality of P , we transform Y into its orthogonal
counterpart Y (Y >Y )−

1
2 . Then cluster indicator matrix Y can be recovered by finding a rotation matrix R to minimize

the squared Euclidean distance between PR and Y (Y >Y )−
1
2 . 3. To guarantee the diversity of different views, a weight

is introduced for each view. Overall, the objective function of the proposed DGMC is as follows:

max
P ,Y ,R

V∑

v=1

α(v)Tr(HPP>HF (v)F (v)>)− λ‖Y (Y >Y )−
1
2 − PR‖2F s.t. P>P = I,Y ∈ Ind,R>R = I, (1)

where Ind defines the set of cluster indicator matrices, λ is a balance parameter, α(v) is the pre-weight of the v-th view.
Nevertheless, it is hard to determine weights without prior knowledge.

Contributions
A novel approach named Dependence-Guided Multi-

view Clustering (DGMC) is proposed. The main contri-
butions of this paper are summarized as follows.

• The proposed model enhances the dependence be-
tween unified embedding learning and clustering, as
well as increases the dependence between unified em-
bedding and embedding of each view.

• A joint framework for unified embedding learning and
clustering is proposed.

• A unified embedding can be learned from differ-
ent views in Reproducing Kernel Hilbert Spaces
(RKHSs) to capture the high-order and non-linear
dependence among these views.

• Implicit-weight learning mechanism enhances the di-
versity of different views.

An Equivalent Model
In this paper, an implicit-weight learning mechanism

is introduced to smartly learn α(v). To this end, we give
the Remark that problem (1) is equivalent to the following
problem (2) with implicit weights:

max
P ,Y ,R

V∑

v=1

(Tr(HPP>HF (v)F (v)>))r

− λ‖Y (Y >Y )−
1
2 − PR‖2F

s.t. P>P = I,Y ∈ Ind,R>R = I, (2)

where r > 1 controls the curvature of weighted-learning
curve. Suppose the solutions of problems (1) and (2) are
〈P∗,Y∗,R∗〉 and 〈P0,Y0,R0〉, respectively. According to
the KKT condition w.r.t P of problem (1), it can be easily
verified that 〈P0,Y0,R0〉 = 〈P∗,Y∗,R∗〉 if α(v) is calcu-

lated as α(v) = r · (Tr(HP0P
>
0 HF (v)F (v)>))r−1.

Optimization
1. When P and R are fixed, problem (1) becomes

min
Y ∈Ind

‖Y (Y >Y )−
1
2 − PR‖2F . (3)

Further, by simply deriving problem (3), we have

max
Y ∈Ind,G=PR

Tr((Y >Y )−
1
2Y >G). (4)

Let Q = Y >Y , then qlj =
∑N

i=1 yilyij . Since Y ∈ Ind,

yilyij = 0 and qlj = 0 hold if l 6= j. Thus Q−
1
2 is a diagonal

matrix with the l-th diagonal element as (y>l yl)
− 1

2 . Then
problem (4) becomes

max
Y ∈Ind

C∑

l=1

y>l gl(y
>
l yl)

− 1
2 . (5)

Since this problem is independent among different rows, we
can solve Y row by row. Given an optimal Ỹ , to update the
i-th row yi, all we need to consider is the increment of the
objective function value from yil = 0 to yil = 1. Therefore,
Problem (5) can be solved by coordinate descent method.
2. When P and Y are fixed, problem (1) becomes

min
R>R=I

‖Y (Y >Y )−
1
2 − PR‖2F , (6)

which is the classical orthogonal procrustes problem. Then
a closed-form solution to R is R = UV >, where USV >

is the SVD of (P>Y (Y >Y )−
1
2 ).

3. When Y and R are fixed, problem (1) becomes

max
P>P=I

Tr(P>AP )− λTr(P>B), (7)

where A = H
∑V

v=1 w
(v)F (v)F (v)>H, Z = Y (Y >Y )−

1
2 ,

B = ZR>. Problem (7) is the typical Quadratic Problem
on the Stiefel Manifold (QPSM), which can be solved by
an efficient algorithm [2].

Theoretical Support
The Lagrangian function of problem (2) is as follows:

L =
V∑

v=1

(Tr(HPP>HF (v)F (v)>))r − λ‖Y (Y >Y )−
1
2 − PR‖2F −∆(P ,Y ,R,Λ), (8)

where ∆(P ,Y ,R,Λ) is the penalty term for the constraints in problem (2). Let the derivative of problem (8) w.r.t P be
zero, and according to the chain-rule, we have

V∑
v=1

∂(Tr(HPP>HF (v)F (v)>))r

∂Tr(HPP>HF (v)F (v)>)

∂Tr(HPP>HF (v)F (v)>)

∂P
− λ∂‖Y (Y >Y )−

1
2 − PR‖2F

∂P
− ∂∆(P ,Y ,R,Λ)

∂P
= 0. (9)

By denoting w(v) def
= ∂(Tr(HPP>HF (v)F (v)>))r

∂Tr(HPP>HF (v)F (v)>)
= r · (Tr(HPP>HF (v)F (v)>))r−1 ( Eq. (10) ), then Eq. (9) becomes

V∑
v=1

w(v) ∂Tr(HPP>HF (v)F (v)>)
∂P − λ∂‖Y (Y >Y )−

1
2−PR‖2F

∂P − ∂∆(P ,Y ,R,Λ)
∂P = 0, which is the KKT condition w.r.t P of prob-

lem (1) by letting α(v) = w(v). Overall, problem (2) can be optimized by iteratively performing the two steps: Step 1.
update w(v) by Eq. (10); Step 2. update 〈P ,Y ,R〉 by letting α(v) = w(v) and solving problem (1). Since there are three
optimization variables in problem (1), we adopt alternative iterative optimization strategy to optimize them.

Experiment Results
The following Table gives the clustering results of the proposed DGMC and related four methods in terms of four

metrics on three real-world datasets. The proposed DGMC shows large advantages over other methods in all the cases.
Moreover, The following Figure shows the convergence curve of the proposed Algorithm on SCENE dataset. We can be
see that the proposed Algorithm can converge within 3 iterations.

Dataset Metric AMGL MEA MLAN MVGL DGMC

MSRC

ACC 0.8571 0.8714 0.6952 0.8714 0.9048
NMI 0.7623 0.7834 0.6565 0.7731 0.8102
ARI 0.7081 0.7199 0.5332 0.7152 0.7861

F 0.7494 0.7597 0.6089 0.7560 0.8160

BBCSport

ACC 0.7206 0.4963 0.7279 0.7169 0.9062
NMI 0.6867 0.2347 0.7146 0.6858 0.8230
ARI 0.5832 0.1492 0.6069 0.5857 0.8510

F 0.7088 0.4546 0.7244 0.7098 0.8881

SCENE

ACC 0.5856 0.6031 0.5335 0.3251 0.6763
NMI 0.5017 0.5042 0.4596 0.2093 0.5282
ARI 0.3821 0.3907 0.3158 0.0728 0.4538

F 0.4820 0.4901 0.4377 0.2680 0.5243 0 3 6 9 12 15 18 21 24 27 30
Iterations

1.239

1.24
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Algorithm Description
Algorithm to solve problem (2).

Input: Initialized P,R. X(v), F (v), V , λ, r
while not converge do

1. Update w(v) via Eq. (10).
2. Update Y via solving problem (3).
3. Update R via solving problem (6).
4. Update P via solving problem (7).

Output: Y
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