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Summary

The technique of model averaging (MA) has not
been considered for the important matrix factoriza-
tion (MF) model under the scenario of federated
learning (FL).

• Propose a new MA based algorithm, named Fed-
MAvg, by judiciously combining the alternating
minimization technique and MA.

• Local GD with diminishing steps and partial
client communication can greatly reduce the
communication cost, even under non-i.i.d. data.

Federated Matrix Factorization Model

The data samples are partitioned as X =
[X1,X2, . . . ,XP ] and respectively owned by P dis-
tributed clients. Each client p owns non-overlapping
data Xp ∈ RM×Np , where Np is the number of sam-

ples of client p and
∑P

p=1Np = N .

min
W , Hp,
p=1,...,P

F (W ,H) ,
P∑
p=1

ωpFp(W ,Hp) (1a)

s.t. W ∈ W ,Hp ∈ Hp,∀p ∈ P , (1b)

where Fp(W ,Hp) = 1
Np

Φp(Xp,WHp), p ∈ P .

• Φp(Xp,WHp) measures the quality of the ap-
proximation Xp ≈WHp, e.g. 1

Np
‖Xp −WHp‖2F .

• P could be large, Np, p = 1, . . . , P , could be un-
balanced, and Xp, p ∈ P could be non-i.i.d.

• Problem (1) is challenging to solve since it is non-
convex and non-smooth, and involves two blocks
of variables W and H .

Central Server

Client 1 Client 2 Client 3

Algorithm Development

• Alternating Minimization:
Given W s−1, each client p performs

Hs
p = arg min

Hp∈Hp
Fp(W

s−1,Hp), (2a)

W s
p = arg min

W
Fp(W ,Hs

p). (2b)

The server does W s = PW(
∑P

p=1 ωpW
s
p ).

• Local GD with Diminishing Q2:

– (2a) via Q1 ≥ 1 consecutive steps of PGD
with respect to Hp.

– (2b) via Qs
2 ≥ 1 (Qs2 = b Q̂

s
c + 1) consecutive

steps of GD with respect to Wp.

• Partial Client Communication (PCC):

– For each round, m clients in As are selected
by the server.

– All clients perform updating but only the
clients in As upload their models to the server
for averaging.

Proposed FedMAvg Method

client p owns non-overlapping data Xp ∈ RM×Np , where Np is the
number of samples of client p and

∑P
p=1Np = N . Besides, there

is a server who coordinates the P clients to accomplish the FedMF
task with all the distributed data X1,X2, . . . ,XP being considered.
Note that, in the FL network, the number of clients P could be large,
the data size Np, p ∈ P , {1, . . . , P}, could be unbalanced, and
the data samples Xp, p ∈ P could be non-i.i.d. [4, 5].

Let H = [H1, . . . ,HP ] be partitioned in the same fashion
as X, and let ωp = Np/N , p ∈ P . Moreover, assume that
Φ(X,WH) =

∑P
p=1 Φp(Xp,WHp) andH = H1×H2 · · ·×HP

which are separable with respect to the partitioned assignment matri-
ces H1, . . . ,HP . Then one can write the MF problem (1) as

min
W, Hp,
p=1,...,P

F (W,H) ,
P∑

p=1

ωpFp(W,Hp) (2a)

s.t.W ∈ W,Hp ∈ Hp, ∀p ∈ P, (2b)

where Fp(W,Hp) = 1
Np

Φp(Xp,WHp), p ∈ P. As seen, W is a
shared variable whereas Hp, p ∈ P , are local variables of clients.

We should emphasize here that problem (2) is much more chal-
lenging to solve than the FL problems considered in the literature
[6–8, 17–19] because 1) problem (2) is non-convex and non-smooth
(due to the constraints) and 2) problem (2) involves two blocks of vari-
ables W and H. Thus, the existing FL algorithms that are designed
for smooth problems with single-block variable cannot be applied to
problem (2). In addition, the GS based methods in [9] and [10] are
not communication-efficient solutions to problem (2), as mentioned
in Section 1 and will be verified in Section 4.

3. PROPOSED FEDMAVG ALGORITHM
3.1. Algorithm Development
In this subsection, we present the proposed FedMAvg algorithm for
problem (2). Directly applying the idea of MA to problem (2) would
lead to an iterative algorithm as follows. For round s = 1, 2, . . .,
each client p obtains an approximate solution to the corresponding
local subproblem of (2), i.e.,

(Ws
p,H

s
p) = arg min

W,Hp

Fp(W,Hp) (3a)

s.t.W ∈ W,Hp ∈ Hp. (3b)

Since W is the shared variable by all clients, the server collects
Ws

1, . . . ,W
s
P from the clients and obtain an average Ws, which is

then broadcasted to the clients for the next round of updates.
To deal with (3), we employ one step of alternating minimization

[16]; that is, given Ws−1, each client p performs

Hs
p = arg min

Hp∈Hp

Fp(W
s−1,Hp), (4a)

Ws
p = arg min

W∈W
Fp(W,Hs

p). (4b)

By following the same spirit as that in [6], instead of trying to globally
solve (4a) and (4b), we propose to approximate them by performing
fixed steps of projected gradient descent (PGD). Specifically, in each
communication round s, each client p performs Q1 ≥ 1 consecutive
steps of PGD with respect to Hp as shown in (6), where ctp > 0 is the
step size, and PH denotes the projection operation onto the setsHp.
After updating Hp, Wp is updated by Q2 ≥ 1 consecutive steps of
GD (no projection) as shown in (8), where ds > 0 is a step size.

Diminishing Q2: Since W is the shared variable by all clients,
the local GD length Q2 should not be too large because it may make
the local variable Wp deviate from the global one too much and
eventually slow down the overall algorithm convergence speed [6–8].

Algorithm 1 Proposed FedMAvg algorithm

Input: initial values of W0
1 = · · · = W0

P at the server side, initial values
of {H0

p}Pp=1 at the clients,A0 = {1, . . . , P} and Q̂.
for round s = 1 to S do

Server side: Compute

Ws = PW
(

1

m

∑

p∈As−1

Ws−1
p

)
,

and select a set of clients As (with size |As| = m) by sampling with
replacement according to probabilities {ω1, . . . , ωP }, and broadcast
Ws to all clients.
Client side:
for client p = 1 to P in parallel do

Set Hs,0
p = Hs−1

p and Ws,0
p = Ws.

for epoch t = 1 to Q1 do

Hs,t
p =PHp

(
Hs,t−1
p −∇HpFp(W

s,t−1
p ,Hs,t−1

p )

csp

)

Ws,t
p = Ws,t−1

p .

end for
for epoch t = Q1 + 1 to Qs = Q1 +Qs2 do

Ws,t
p = Ws,t−1

p − ∇WFp(W
s,t−1
p ,Hs,t−1

p )

ds
,

Hs,t
p = Hs,t−1

p .
end for
Denote Ws

p = Ws,Qs

p and Hs
p = Hs,Qs

p .
if client p ∈ As then

Upload Ws
p to the server.

end if
end for

end for

We propose to consider a diminishing Q2 instead of a constant Q2;
for example, we considerQs2 = b Q̂

s
c+1, where Q̂ is a preset number.

The intuition is that in the early iterations the clients should “explore”
its local data more by performing more GD updates, whereas when the
algorithm is close to convergence, they should make small movements
only to avoid from model deviation. As will be demonstrated later
by theoretical analysis and empirical experiments, the strategy of
diminishing Q2 can benefit the algorithm convergence significantly.

Partial client communication (PCC): After a total number of
Qs = Q1 + Qs2 local updates, each client p sends Ws,Qs

p to the
server for model averaging. Like FedAvg [6], we let the server
samples a small, fixed-size subset of clients (denoted byAs with size
|As| = m � P ) and ask them to upload their local models Ws

p,
p ∈ As. The server then simply takes the average of the uploaded
messages by (5) followed by projection onto W . Note that under
PCC, the clients that are not selected are still active in updating their
local variables by (6)-(9), which is different from [6, 8] where non-
selected clients are completely inactive. It will be shown that the PCC
scheme actually can provide significant performance improvement,
particularly in heterogeneous networks with non-i.i.d data.

Finally, the proposed FedMAvg is summarized in Algorithm 1.

3.2. Convergence Analysis of FedMAvg
We first make some proper assumptions on problem (2).

Assumption 1 All local cost functions Fp are lower bounded, i.e.,
Fp(W,Hp) ≥ F > −∞, ∀W ∈ W,Hp ∈ Hp. The constraint
setsW andHp, p ∈ P , are convex and compact.

Assumption 2 Fp are continuously differentiable in both W and
Hp. Moreover,∇HpFp(W

s, ·) is Lipschitz continuous onHp with

Convergence Analysis

Bounds:
‖∇WFp(W ,Hp)−∇WF (W ,H)‖2F ≤ ζ2, (3)

‖∇WF (W ,H)‖2F ≤ φ2, (4)

Virtual Sequences:∀t = 1, . . . , Q,

W̃ s,t = PW
(

1

m

∑

p∈As

W s,t
p

)
, W̃ s,0 = W s, (5)

Proximal Gradient:

Gs,tH ,
P∑

p=1

ωp(c
s
p)

2
∥∥Hs,t

p − PHp

(
Hs,t
p

−(csp)−1∇HpFp(W̃
s,t,Hs,t

p )
)∥∥2
F
, ∀t ∈ Q1, (6)

Gs,tW , (ds)2‖W̃ s,t − PW
(
W̃ s,t

− (ds)−1∇WF (W̃ s,t,Hs,t)
)
‖2F , ∀t ∈ Qs2, (7)

Theorem 1 Let Qs2 = b Q̂
s
c + 1, and let T be the

total number of iterations. Moreover, let csp =
γ1
2
LsHp , ds = γ2L

s
W , where γ1 > 1 and γ2 ≥

Q1
2

√
2(7 + 4L

2
W /L2

W ). Then, under Assumptions, the se-

quence {(W̃ s,t,Hs,t)} satisfies

1

T

[ S∑

s=1

Q1∑

t=1

E[Gs,t−1
H ] +

S∑

s=1

Qs∑

t=Q1+1

E[Gs,t−1
W ]

]

≤D
T

(
F (W̃ 1,0,H1,0)− F

)
+

(
8Dζ2

mγ2LW
+

96ζ2

m

)

+
2D(1 + 8/m)( 11

3
ζ2 + φ2)

∑S
s=1 C

s
1

Tγ3
2LW

+
( 11

3
ζ2 + φ2)

∑S
s=1 C

s
2

Tγ2
2

+
3(ζ2 + φ2)

∑S
s=1 C

s
1

2T
, (8)

where D , γ21LH

2(γ1−1)
+

6(γ22+1)L
2
W

(γ2−1)LW
, Cs1 , Qs2(Q

s
2 − 1)(2Qs2 − 1),

and Cs2 , 6(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)Cs1 .

Numerical Results II

Application to Item Recommendation:

• Recommendation performance:
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Fig. 1: Convergence curve of FedMAvg versus number of communication rounds with
different local GD lengths.
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Fig. 2: Convergence curve of FedMAvg versus (a) number of rounds and (b) communi-
cation cost, on the TCGA dataset. It is set Q1 = 10 for all curves, and those in (b) use
the same setting of Q1 and Q̂ as their counterparts in (a).

scheme and the partial client participation (PCP) scheme [6] where in
the latter the non-selected clients do not perform local updates. One
can see that PCC can lead to a significantly faster convergence speed.
The reason behind is because problem (2) involves two blocks of
variables, and thus PCP could make the local model of non-selected
clients deviate from the global model more likely.

Effect of non-i.i.d. data and PCC: We examine the perfor-
mance of FedMAvg when under non-i.i.d. data and PCC, on the
TCGA dataset. For comparison, we also implemented the FedMF
algorithm in [10] (denoted as “SFMF”). In Fig. 2(a), one can observe
that under i.i.d. data the number of clientsm has much less impact on
the convergence than under non-i.i.d. data. Moreover, the proposed
FedMAvg with PCC can converge faster than SFMF even though all
clients are allowed to be active in SFMF. In Fig. 2(b), we plot the
curves with respect to the communication cost, and one can see that
PCC indeed effectively reduces the communication cost.

Clustering performance: To evaluate the clustering perfor-
mance of FedMAvg, we follow the successive non-convex penalty
(SNCP) approach in [25] to gradually increase the penalty parameter
ρ in [21, Eqn. (9)] whenever problem (2) is solved with sufficiently
small ε. Specifically, the initial ρ is set to 10−8 and is updated by
ρ = 1.5 × ρ whenever ε < 1 × 10−5. The stopping condition
of SNCP is set to ε < 1 × 10−8. Both FedMAvg and SFMF are
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Fig. 3: Clustering accuracy versus communication cost of various algorithms under test
on (a) the synthetic dataset and (b) the TCGA dataset. The setting of FedMAvg is the
same as their counterparts in Fig. 2(b).
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Fig. 4: RMSE versus the (a) number of rounds and (b) communication cost.. For Fed-
MAvg, it is set that Q1 = 10 and Q̂ = 5.

tested and applied to solve [25]. In addition to the centralized
SNCP method [21, Algorithm 1 & 2], the popular K-means++ [26],
and three state-of-the-art distributed clustering methods KM|| [27],
BEL [24], and CAL [28] are also implemented. Fig. 3 presents
the clustering accuracy (ACC [29]) versus communication cost on
the two datasets. One can observe that FedMAvg (m = 10) can
achieve a much higher clustering accuracy than SFMF with a lower
communication cost. Note that KM||, BEL, and CAL do not need
much message exchange between the server and clients, but as shown
in Fig. 3, their clustering accuracy is not as good.

4.2. FedMAvg for Item Recommendation
Model and data set: We consider a recommendation system fol-
lowing the MF model in [2, 10] which corresponds to problem (2)
with Fp(W,Hp) = 1

Np
‖Xp−WHp‖2F +λ‖W‖2F +λ‖H‖2F and

W = RM×K ,Hp = RK×Np , where the penalty parameter λ is set
to 10−6. The settings of FedMAvg are the same as those in Section
4.1. Besides FedMAvg, the centralized algorithm in [2] and the SFMF
are implemented as two benchmarks. A real movie rating dataset [2]
from MovieLens is considered, which contains 105 ratings made
by 610 users on 9724 movies, i.e. N = 610,M = 9724. We set
K = 40. The 610 data samples are assigned to P = 610 clients
(so Np = 1). For each data, we set 20% of entries to be zero which
will be predicted by the trained recommendation model. The perfor-
mance is measured by root mean square error (RMSE) [9] between
the predicted entries and true values.

Recommendation performance: Fig. 4 presents the recom-
mendation performance versus the communication round number and
communication cost. One can observe from Fig. 4(a) that the per-
formance of FedMAvg can quickly approach that of the centralized
counterpart, even under PCC withmmuch smaller than 610. As seen
from Fig. 4(b), the proposed FedMAvg with m = 10 can reach a
small value of RMSE (very close to that of the centralized algorithm)
with a much less communication cost, and greatly outperforms SFMF.

Numerical Results I

Application to Data Clustering:

• Convergence behavior:
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scheme and the partial client participation (PCP) scheme [6] where in
the latter the non-selected clients do not perform local updates. One
can see that PCC can lead to a significantly faster convergence speed.
The reason behind is because problem (2) involves two blocks of
variables, and thus PCP could make the local model of non-selected
clients deviate from the global model more likely.

Effect of non-i.i.d. data and PCC: We examine the perfor-
mance of FedMAvg when under non-i.i.d. data and PCC, on the
TCGA dataset. For comparison, we also implemented the FedMF
algorithm in [10] (denoted as “SFMF”). In Fig. 2(a), one can observe
that under i.i.d. data the number of clientsm has much less impact on
the convergence than under non-i.i.d. data. Moreover, the proposed
FedMAvg with PCC can converge faster than SFMF even though all
clients are allowed to be active in SFMF. In Fig. 2(b), we plot the
curves with respect to the communication cost, and one can see that
PCC indeed effectively reduces the communication cost.

Clustering performance: To evaluate the clustering perfor-
mance of FedMAvg, we follow the successive non-convex penalty
(SNCP) approach in [25] to gradually increase the penalty parameter
ρ in [21, Eqn. (9)] whenever problem (2) is solved with sufficiently
small ε. Specifically, the initial ρ is set to 10−8 and is updated by
ρ = 1.5 × ρ whenever ε < 1 × 10−5. The stopping condition
of SNCP is set to ε < 1 × 10−8. Both FedMAvg and SFMF are
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tested and applied to solve [25]. In addition to the centralized
SNCP method [21, Algorithm 1 & 2], the popular K-means++ [26],
and three state-of-the-art distributed clustering methods KM|| [27],
BEL [24], and CAL [28] are also implemented. Fig. 3 presents
the clustering accuracy (ACC [29]) versus communication cost on
the two datasets. One can observe that FedMAvg (m = 10) can
achieve a much higher clustering accuracy than SFMF with a lower
communication cost. Note that KM||, BEL, and CAL do not need
much message exchange between the server and clients, but as shown
in Fig. 3, their clustering accuracy is not as good.

4.2. FedMAvg for Item Recommendation
Model and data set: We consider a recommendation system fol-
lowing the MF model in [2, 10] which corresponds to problem (2)
with Fp(W,Hp) = 1

Np
‖Xp−WHp‖2F +λ‖W‖2F +λ‖H‖2F and

W = RM×K ,Hp = RK×Np , where the penalty parameter λ is set
to 10−6. The settings of FedMAvg are the same as those in Section
4.1. Besides FedMAvg, the centralized algorithm in [2] and the SFMF
are implemented as two benchmarks. A real movie rating dataset [2]
from MovieLens is considered, which contains 105 ratings made
by 610 users on 9724 movies, i.e. N = 610,M = 9724. We set
K = 40. The 610 data samples are assigned to P = 610 clients
(so Np = 1). For each data, we set 20% of entries to be zero which
will be predicted by the trained recommendation model. The perfor-
mance is measured by root mean square error (RMSE) [9] between
the predicted entries and true values.

Recommendation performance: Fig. 4 presents the recom-
mendation performance versus the communication round number and
communication cost. One can observe from Fig. 4(a) that the per-
formance of FedMAvg can quickly approach that of the centralized
counterpart, even under PCC withmmuch smaller than 610. As seen
from Fig. 4(b), the proposed FedMAvg with m = 10 can reach a
small value of RMSE (very close to that of the centralized algorithm)
with a much less communication cost, and greatly outperforms SFMF.

• Effect of non-i.i.d and PCC (Case 2: non-i.i.d):
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scheme and the partial client participation (PCP) scheme [6] where in
the latter the non-selected clients do not perform local updates. One
can see that PCC can lead to a significantly faster convergence speed.
The reason behind is because problem (2) involves two blocks of
variables, and thus PCP could make the local model of non-selected
clients deviate from the global model more likely.

Effect of non-i.i.d. data and PCC: We examine the perfor-
mance of FedMAvg when under non-i.i.d. data and PCC, on the
TCGA dataset. For comparison, we also implemented the FedMF
algorithm in [10] (denoted as “SFMF”). In Fig. 2(a), one can observe
that under i.i.d. data the number of clientsm has much less impact on
the convergence than under non-i.i.d. data. Moreover, the proposed
FedMAvg with PCC can converge faster than SFMF even though all
clients are allowed to be active in SFMF. In Fig. 2(b), we plot the
curves with respect to the communication cost, and one can see that
PCC indeed effectively reduces the communication cost.

Clustering performance: To evaluate the clustering perfor-
mance of FedMAvg, we follow the successive non-convex penalty
(SNCP) approach in [25] to gradually increase the penalty parameter
ρ in [21, Eqn. (9)] whenever problem (2) is solved with sufficiently
small ε. Specifically, the initial ρ is set to 10−8 and is updated by
ρ = 1.5 × ρ whenever ε < 1 × 10−5. The stopping condition
of SNCP is set to ε < 1 × 10−8. Both FedMAvg and SFMF are
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on (a) the synthetic dataset and (b) the TCGA dataset. The setting of FedMAvg is the
same as their counterparts in Fig. 2(b).
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tested and applied to solve [25]. In addition to the centralized
SNCP method [21, Algorithm 1 & 2], the popular K-means++ [26],
and three state-of-the-art distributed clustering methods KM|| [27],
BEL [24], and CAL [28] are also implemented. Fig. 3 presents
the clustering accuracy (ACC [29]) versus communication cost on
the two datasets. One can observe that FedMAvg (m = 10) can
achieve a much higher clustering accuracy than SFMF with a lower
communication cost. Note that KM||, BEL, and CAL do not need
much message exchange between the server and clients, but as shown
in Fig. 3, their clustering accuracy is not as good.

4.2. FedMAvg for Item Recommendation
Model and data set: We consider a recommendation system fol-
lowing the MF model in [2, 10] which corresponds to problem (2)
with Fp(W,Hp) = 1

Np
‖Xp−WHp‖2F +λ‖W‖2F +λ‖H‖2F and

W = RM×K ,Hp = RK×Np , where the penalty parameter λ is set
to 10−6. The settings of FedMAvg are the same as those in Section
4.1. Besides FedMAvg, the centralized algorithm in [2] and the SFMF
are implemented as two benchmarks. A real movie rating dataset [2]
from MovieLens is considered, which contains 105 ratings made
by 610 users on 9724 movies, i.e. N = 610,M = 9724. We set
K = 40. The 610 data samples are assigned to P = 610 clients
(so Np = 1). For each data, we set 20% of entries to be zero which
will be predicted by the trained recommendation model. The perfor-
mance is measured by root mean square error (RMSE) [9] between
the predicted entries and true values.

Recommendation performance: Fig. 4 presents the recom-
mendation performance versus the communication round number and
communication cost. One can observe from Fig. 4(a) that the per-
formance of FedMAvg can quickly approach that of the centralized
counterpart, even under PCC withmmuch smaller than 610. As seen
from Fig. 4(b), the proposed FedMAvg with m = 10 can reach a
small value of RMSE (very close to that of the centralized algorithm)
with a much less communication cost, and greatly outperforms SFMF.

• Clustering performance versus distributed clustering
(KM||[1], BEL[2], CAL[3]) and MF (SFMF[4]):
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Fig. 1: Convergence curve of FedMAvg versus number of communication rounds with
different local GD lengths.
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scheme and the partial client participation (PCP) scheme [6] where in
the latter the non-selected clients do not perform local updates. One
can see that PCC can lead to a significantly faster convergence speed.
The reason behind is because problem (2) involves two blocks of
variables, and thus PCP could make the local model of non-selected
clients deviate from the global model more likely.

Effect of non-i.i.d. data and PCC: We examine the perfor-
mance of FedMAvg when under non-i.i.d. data and PCC, on the
TCGA dataset. For comparison, we also implemented the FedMF
algorithm in [10] (denoted as “SFMF”). In Fig. 2(a), one can observe
that under i.i.d. data the number of clientsm has much less impact on
the convergence than under non-i.i.d. data. Moreover, the proposed
FedMAvg with PCC can converge faster than SFMF even though all
clients are allowed to be active in SFMF. In Fig. 2(b), we plot the
curves with respect to the communication cost, and one can see that
PCC indeed effectively reduces the communication cost.

Clustering performance: To evaluate the clustering perfor-
mance of FedMAvg, we follow the successive non-convex penalty
(SNCP) approach in [25] to gradually increase the penalty parameter
ρ in [21, Eqn. (9)] whenever problem (2) is solved with sufficiently
small ε. Specifically, the initial ρ is set to 10−8 and is updated by
ρ = 1.5 × ρ whenever ε < 1 × 10−5. The stopping condition
of SNCP is set to ε < 1 × 10−8. Both FedMAvg and SFMF are
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tested and applied to solve [25]. In addition to the centralized
SNCP method [21, Algorithm 1 & 2], the popular K-means++ [26],
and three state-of-the-art distributed clustering methods KM|| [27],
BEL [24], and CAL [28] are also implemented. Fig. 3 presents
the clustering accuracy (ACC [29]) versus communication cost on
the two datasets. One can observe that FedMAvg (m = 10) can
achieve a much higher clustering accuracy than SFMF with a lower
communication cost. Note that KM||, BEL, and CAL do not need
much message exchange between the server and clients, but as shown
in Fig. 3, their clustering accuracy is not as good.

4.2. FedMAvg for Item Recommendation
Model and data set: We consider a recommendation system fol-
lowing the MF model in [2, 10] which corresponds to problem (2)
with Fp(W,Hp) = 1

Np
‖Xp−WHp‖2F +λ‖W‖2F +λ‖H‖2F and

W = RM×K ,Hp = RK×Np , where the penalty parameter λ is set
to 10−6. The settings of FedMAvg are the same as those in Section
4.1. Besides FedMAvg, the centralized algorithm in [2] and the SFMF
are implemented as two benchmarks. A real movie rating dataset [2]
from MovieLens is considered, which contains 105 ratings made
by 610 users on 9724 movies, i.e. N = 610,M = 9724. We set
K = 40. The 610 data samples are assigned to P = 610 clients
(so Np = 1). For each data, we set 20% of entries to be zero which
will be predicted by the trained recommendation model. The perfor-
mance is measured by root mean square error (RMSE) [9] between
the predicted entries and true values.

Recommendation performance: Fig. 4 presents the recom-
mendation performance versus the communication round number and
communication cost. One can observe from Fig. 4(a) that the per-
formance of FedMAvg can quickly approach that of the centralized
counterpart, even under PCC withmmuch smaller than 610. As seen
from Fig. 4(b), the proposed FedMAvg with m = 10 can reach a
small value of RMSE (very close to that of the centralized algorithm)
with a much less communication cost, and greatly outperforms SFMF.
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