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Motivations



Face Sketch Synthesis

e Facial Photo = Sketch =

e Applications
= Digital entertainment

= Public Security
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Face Sketch Synthesis

(a) Paired GANs  (b) Unpaired GANs (c) Our method
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Fig. 1. Illustration of applying paired GANSs, unpaired GANSs,
and our method to unpaired training samples.

Our main idea is

bridging the photo domain and the sketch domain by using the line-drawing domain.



Our work: sRender



Our method
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Pipeline of the proposed method



F: Line-Drawing Generation

e AiSketcher: Neual Style Transfer (NST) based method, need no paired data.
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Pipeline of AiSketcher
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Fei Gao, Jingjie Zhu, Zeyuan Yu, Peng Li, Tao Wang, "Making Robots Draw A Vivid Portrait In Two Minutes," in the Proceedings of the 2020 IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS 2020), pp. 9585-9591, Las Vegas, USA, 2020. http://aiart.live/AiSketcher/
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G: Sketch Synthesis Network

e Generator

= 5 Covolutional layers, 9 residual blocks,

and 5 Transposed Convolutional layers

e Discriminator

= two discriminators, the same architecture Generated paiited GANS Synthesized

i ; . Line-d ' (shared) Sketch
with different scales of images INE-SIaaiNEsS | etches

e Activation function
= RelLU and leaky ReLU in the generator and discriminators, respectively

e Normalization

m Instance normalization is used in all networks



Objectives

e Stroke Loss

= human artists present different facial areas by using diverse strokes.

» 7 types of strokes according to facial areas:

skin, hair, boundary, eye brow, eye, clips, and ear.

= train a CNN to correctly classify the stroke type of a given patch, and calculate the loss by

Lo =33 107 (i) — 7 (G(z)l:

i=1 j

e Full Objective

= We additionally use perceptual loss, adversarial loss, the feature matching loss:

(G*Dj) = min max Logy + AiLry + A2Lvee + AsLstr

we set Ay = 100, Ay = 10and X3 = 0.002



Experiments



Dataset

e Collect from Web: about 300 sketches each type.

croquis @HYEJUNG

charcoal




Dataset

e Photos: about 500 facial photos

example of facial photos select from CelebA-HQ



Sketch Reconstruction

(b) (e)
(a)Real croquis sketch, (b) synthesised line-drawing, (c) reconstructed sketch;
(d) real charcoal sketch, (e) synthesised line-drawing, and (f) reconstructed charcoal sketch

FID of 22.92 on the croquis sketches, and 12.30 on the charcoal sketches



Sketch Generation

(a) (b) © @ @ (b) (c) (d)

(a) Input photo, (b)synthesised line-drawing, (c) generated croquis sketch, and(d) generated charcoal sketch



#

Input MUNIT DRIT NICE-GAN U-GAT-IT CycleGAN  AdalN sRender

| AdaIN [19] CycleGAN [¢] MUNIT [15] DRIT[!16] NICE-GAN [26] U-GAT-IT [!4] sRender (Ours)
FID | 49.43 45.51 46.35 42.80 39.71 48.26 30.35




Ablation Study

e Croquis sketch Reconstruction
= (a) sRenderpipix,

= (b)sRender w/o L,

= (c)sRender, and
= (d)the ground truth.

e Superiority
m  Pix2PixHD > Pix2Pix

= L, leads to realistic textures SRenderpixopix  sRender w/o Ly sRender
FID 37.49 22.97 22.92
Scoot 0.557 0.570 0.587
Acc. 0.672 0.739 0.750




Summary



Conclusions

e Contributions
= A novel Framework

m Stroke Loss
= SOTA results
https://aiart.live/sRender
e Future Work y
= Quality improvement

= Various styles of artistic

portraits, e.g. oil paintigs
= Semi-supervised learning

= Few-shot learning

left: croquis style; right: charcoal style
(a) photos, (b) line-drawings, (c)generated sketches



e You can try extensions of this work in WeChat or Browser:
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WEB API

WeiXin (WeChat)
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