Sparse time-frequency representation via atomic norm minimization

Tsubasa Kusano, Koheli Yatabe, Yasuhiro Oikawa (Waseda University, Japan)

Introduction
Aim: Estimate a well-localized time-frequency representation

* Nonstationary signals are commonly analyzed and processed in the
time-frequency (T-F) domain.

= A T-F representation obtained by the discrete Gabor transform (DGT) is
spread due to windowing of an analyzed signal.

= Sparse estimation using the ¢1-norm needs to discretize a continuous
parameter onto a grid [1].
— may degrade the performance due to a model mismatch.
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Estimating T-F representation using ¢,-norm

Proposal:
Sparse T-F representation via atomic horm minimization

=« Atomic norm [2]
- Sparse optimization technique without discritization of continuous parameters

- Corresponding to an infinite-dimensional dictionary of /;-norm

* Introducing atomic norm into sparse T-F estimation avoids the effect
of the grid mismatch.
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Estimating T-F representation using the proposed method

Sparse T-F representation
Gabor system and discrete Gabor transform

= A Gabor system is defined as a collection of sinusoids modulated by g.

G(g,a, M) = {gm,n}mzo,...,M—Ln:O,...,N—1 )

- 2mm(l—an)

gm,n[l] =e M

gll — an
= DGT and the inverse DGT with respect to the Gabor system G(g, a, M):
(GeB)m +nM] = (f,8mn),  Ggc= ) c[m+nM|gmn

m,mn

- A T-F representation ¢ € CM¥ satisfying f = Ggc can be obtained by

DGT with a dual window h associated with g
Sparse T-F representation using /,-norm [1]

= The T-F representation c is a redundant representation of a signal f.
— The T-F representation c satisfying f = Ggc is not unique.

* Find a sparse c satisfying f = Ggc using £;-norm.
lclly = Gge

minimize subject to
C
= This problem Is convex
— can be efficiently solved by convex optimization algorithms.

= This formulation may provide a poor result when the signal f has a
component whose frequency is not included in the grid.

Atomic norm
Line spectrum estimation using atomic norm

= A windowed signal at time index n is denoted as f,, = W, {.
- W,, is a diagonal matrix whose diagonal elements are g|l — an|

= We assume that the nth windowed signal is superimposed by atoms in
A={aeC"|all]| =e"™" we0,1)}

f, =W, E Cn kQnk, QAnk € A.
k

 The atomic norm of x,, associated with a set of atoms A is given by

4 )

HXnHA = inf < Z ‘an’ Xn = ch,kan,k, An k € A

. k k J

* Line spetrum estimation using the atomic norm is formulated as

minimize subject to f,, = W, x,,.
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Proposed method

Sparse T-F representation using atomic norm

* Inducing sparsity by a sum of atomic norms under the constraint of
the reconstruction of the entire signal

N—-1
minimize Z |Xn|| 4  subject to| f = Agx.
~ n=0
_ [T T T 1
-X = [XO,Xl,...,XN_l}

= A sum of atomic norms for time index n

N—1
m}i{n Z x| 4 = inf Z Cn i
n=0 n,k

- corresponding to the grid-less version of the £1-norm-based method.

Xn — E Cn.kAn.k, An k c A

k

= Reconstructing the signal f by windowning and summing x,,

N—1
Agx =Y W,x,
n=0
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Semidefinite programming formulation of atomic norm

* The atomic norm is characterized by a semidefinite programming.
1 1

1% | 4 :&S}SL 2LTr (T'(uy)) + 2Vn
subject to T(I:n) N I
L Xn Y

-T(u) is the Hermitian Toeplitz matrix whose first row is u.
-a,, . can be obtained by the Vandermonde decomposition of T'(u).

* Thus, the line spetrum estimation problem is reformulated as
1 1

minimize ) Tr(T(un)) + 5 vo
subject to Tg::”) );n ~0, f,=W,x,.

Algorithm for solving this problem

« Semidefinite programming formulation of the proposed method

N-1 |
minimize ?;) 2LTr(T(un)) + oV
subject to T(lin) Eno | 0, forn=0,...,N —1
L Xn Vn _
I = Agx

Algorithm 1 Proposed algorithm
Input: A, f, p

= Alternating direction method of multipliers
(ADMM) for solving this problem.

- Pc(-). The projection onto the set C = {x|Agx = f}

Output: x, u, v
Initialize Z,, and A,, forn =0,..., N —1
for:=0,1,--- do
X < Po (zx — %)\X)
forn=1,---,N do
W, ¢ T (Zr, = & (Ar, — 311))

p Qo —3)
+ %An>

T(u,) xu
T(w,) xp ] g )

Po(v) =v — AL(AgAL) ' (Agv — ).

-TT(-). The pseudo-inverse operator of I’

1 L—n-1 Z, « Ps, (

TT(X)[n]ZQ(L_n) Y (X[k,k+n]+X[k7+n,k]).

*
X Un

AneAn—l—p<

end for

- Ps.: The projection onto the positive
semidefinite cone

end for

= The T-F representations obtained by the proposed method were the most-localized among these T-F representations.
— The proposed method provides a sparser T-F representation via atomic norm minimization as a result of avoiding the grid mismatch.
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