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Our Goal: Pitch-Timbre Disentanglement
Disentangle an arbitrary musical instrument sound 
into latent pitch and timbre representations
• Deal with music sounds played by any harmonic instruments
• Make the latent pitch and timbre spaces human-interpretable
• Introduce a metric learning technique into a VAE

Pitch

Timbre

Disentangle

Musical instrument sound
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What is Disentanglement?
To describe data as a combination of independent factors
• Make latent representations interpretable
• Enable us to intuitively control each factor in data generation
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What is Disentanglement?
To describe data as a combination of independent factors
• Make latent representations interpretable
• Enable us to intuitively control each factor in data generation

In the field of music information retrieval (MIR), 
a sound is disentangled into the three major elements:

Volume Timbre Pitch

Can be computed easily Mainly focused
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VAE for Disentanglement
A popular approach is to train a variational autoencoder 
(VAE), as a deep latent variable model

Sound Reconstructed sound

Encoder
for Pitch

Decoder

Encoder
for Timbre

Pitch space

Timbre space
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Conventional Approach
Assume the Gaussian distributions correspond to individual 
pitches and timbres (instruments)

Sound Reconstructed sound

Pitch space

Timbre space
Luo et al. “Learning disentangled representations of timbre and pitch for musical instrument sounds using Gaussian mixture variational autoencoders”, ISMIR 2019.

Encoder
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Conventional Approach
Use concrete category labels

Pitch space

Timbre space

C3

Piano

Guitar

G4 A4

Violin

Luo et al. “Learning disentangled representations of timbre and pitch for musical instrument sounds using Gaussian mixture variational autoencoders”, ISMIR 2019.
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Motivation
The conventional approach did not aim to treat an arbitrary 
musical instrument sound
• Set a finite number of Gaussian distributions mixtures
• Must prepare all the target labels and data beforehand
• Cannot handle unseen pitches and timbres that are not 

included in the training data

Disentanglement without using the concrete category 
labels enables to treat an arbitrary musical instrument sound
• Instead, use similarities and dissimilarities of samples 
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Key Idea
Introduce a metric learning technique
• A technique used for representing the dissimilarities of samples 

as the distances in a latent space
• Similar samples are mapped close to each other
• Dissimilar samples are mapped far away from each other
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Key Idea
The DNN is trained by using only the information
about the category match or mismatch of any two samples
instead of using concrete category labels

Samples of unseen categories (e.g., pitches and timbres)
that are not included in the training data can be dealt with
(a.k.a. zero-shot learning)
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Method
First, formulate a probabilistic model of the observed 
spectrogram 𝐗 with latent representations 𝒁! and 𝒁"

Pitch space
𝒁! = 𝒛!":$ ∈ ℝ%×$

Timbre space 
𝒁' = 𝒛'":$ ∈ ℝ%×$

Observed 
power spectrogram 
𝐗 = 𝐱":$ ∈ ℝ()×$

𝑞*! 𝒁! 𝐗

𝑝+ 𝑿 𝒁!, 𝒁'

𝑞*" 𝒁' 𝐗
Reconstructed 

power spectrogram 
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Method
Second, transform two observed spectrograms 𝐗# and 𝐗$
into the latent variables 𝒁! and 𝒁" independently

Timbre space 
𝒁' = 𝒛'":$ ∈ ℝ%×$

Observed 
power spectrogram 
𝐗 = 𝐱":$ ∈ ℝ()×$

𝑝+ 𝑿 𝒁!, 𝒁'

𝑞*" 𝒁' 𝐗
Reconstructed 

power spectrogram 

Pitch space
𝒁! = 𝒛!":$ ∈ ℝ%×$

𝑞*! 𝒁! 𝐗



Third, conduct pairwise metric learning with contrastive loss 
functions ℒ%

! (for pitch) and ℒ%" (for timbre)
• ℒ,

- = 𝒟..
- +𝒟//

- ±𝒟./
- (ℒ,0 is calculated in a similar way)
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Method

The sum of distances between
all latent variable pairs of the
same spectrogram (𝐗" and 𝐗,)
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Method

The sum of distances between
all latent variable pairs from
different spectrograms
+: if 𝐗" and 𝐗, have the same pitch
−: otherwise

The sum of distances between
all latent variable pairs of the
same spectrogram (𝐗" and 𝐗,)



Third, conduct pairwise metric learning with contrastive loss 
functions ℒ%

! (for pitch) and ℒ%" (for timbre)
• ℒ,

- = 𝒟..
- +𝒟//

- ±𝒟./
- (ℒ,0 is calculated in a similar way)

• ℒ,
- and ℒ,0 pull similar samples close to each other                    

and keep dissimilar samples far from each other
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Method

The sum of distances between
all latent variable pairs from
different spectrograms
+: if 𝐗" and 𝐗, have the same pitch
−: otherwise

The sum of distances between
all latent variable pairs of the
same spectrogram (𝐗" and 𝐗,)



Train the networks in a weakly supervised manner
• Only information on whether pitches and timbres of a pair of 

observed spectrograms are identical or not is required 
• Their actual labels are not necessary

The training is conducted with the following total loss 
function ℒ"&"'(
• ℒ03045 = −ℒ647 + 𝛼ℒ,

- + 𝛽ℒ,0
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Method

Hyperparameters
to control the weights

𝔼!!" !!# 𝒁
", 𝒁# 𝐗 log 𝑝$ 𝑿 𝒁", 𝒁#

−𝒟%& 𝑞'" 𝒁" 𝐗 ‖𝑝 𝒁" − 𝒟%& 𝑞'# 𝒁# 𝐗 ‖𝑝 𝒁#



Data
• Used instrument sounds from the RWC Music Database

• Excepted for Shakuhachi, Soprano, and Alto
• Selected the sounds of pitches from C3 to B5
• Split into three sets:

• Training set (29957 sounds, 40 instruments) 
• Evaluation sets (10957 sounds, 10 instruments, 2-fold cross-validation)

• The three sets shared pitches but did not share instruments
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Experimental Evaluation

Goto et al., “RWC music database: Music genre database and musical instrument sound database”, ISMIR 2003.



Model Configuration

20

Experimental Evaluation

Input 𝐗
(𝐹 × 𝑇 Spectrogram)

𝐙"(#

𝐙#()

Output 𝐘
(𝐹 × 𝑇 Spectrogram)

𝝁"(#

𝝁#()

𝝈"(#

𝝈#()

BLSTM Layer FC Layer



Evaluation Criteria
• Denseness (Smaller is better)

• How close the latent variables with the same pitch or timbre label are
• Calculated as:   "

-
∑./"- "

01#
∑2/"
1# ∑3/"0 𝒛.23

! − 𝜼.
! (Timbre in a similar way)

• 𝜼.
! = "

01#
∑2/"
1# ∑3/"0 𝒛.23

!

• Divergence (Larger is better)
• How far the latent variables with different pitch or timbre labels are

• Calculated as:   ,
-(-5")

∑.$/"
-5" ∑.%/"

- 𝜼.$
! − 𝜼.%

! (Timbre in a similar way)
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Experimental Evaluation



The denseness got smaller, and the divergence got larger     
in both latent spaces by introducing the metric learning
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Experimental Results

Methods
Pitch representations Timbre representations

Denseness ↓ Divergence ↑ Denseness ↓ Divergence ↑
Vanilla VAE 3.334 2.279 3.640 1.541

Proposed VAE 2.891 3.551 3.420 2.654



Found better-structured disentangled representations with 
pitch and timbre clusters for unseen musical instruments
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Experimental Results
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Timbre space
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Denseness: Achieved better denseness for most pitches and 
timbres by using the contrastive losses
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Experimental Results
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Divergence: Succeeded in mapping the different timbres to 
be distant from each other
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Experimental Results
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We proposed the VAE-based method for disentangling a 
musical instrument sound into latent pitch and timbre 
representations
• Deal with music sounds played by any harmonic instruments
• Make the latent pitch and timbre spaces human-interpretable
• Introduce a metric learning technique into a VAE
• Successfully disentangled the latent pitch and timbre 

representations compared to the vanilla VAE
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Summary

Thank you for watching!


