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Method

Backgrounds Approach
Introduce a metric learning technique

• A technique used for representing the dissimilarities of samples as the 
distances in a latent space

• Similar samples are mapped close to each other
• Dissimilar samples are mapped far away from each other

Evaluation
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What is Disentanglement?

• To describe data as a combination of independent factors
• A sound can be disentangled into pitch and timbre
• Conventional approach cannot treat an arbitrary musical instrument 

sound because of using the concrete category labels
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Generative Model of the Observed Spectrogram Pairwise Metric Learning for Disentanglement
Formulate a probabilistic model of the observed spectrogram 𝐗
with latent representations 𝒁! and 𝒁"
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Transform two observed spectrograms 𝐗# and 𝐗$ into the latent 
variables 𝒁! and 𝒁" independently

ℒ!
" = 𝒟##

" +𝒟$$
" ±𝒟#$

" (ℒ!% is calculated in a similar way)
Contrastive loss functions ℒ%

! (for pitch) and ℒ%" (for timbre)

The sum of distances between
all latent variable pairs from
different spectrograms
+: if 𝐗" and 𝐗, have the same pitch
−: otherwise

The sum of distances between
all latent variable pairs of the
same spectrogram (𝐗" and 𝐗,)

Training with the Weakly Supervised Learning

ℒ%&%'( = −ℒ)'* + 𝛼ℒ!
" + 𝛽ℒ!%

The training is conducted with the total loss function ℒ"&"'(

Hyperparameters
to control the weights

𝔼!!" !!# 𝒁
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• Conduct pairwise metric learning for these 2𝑇 samples

• ℒ!
" and ℒ!# pull similar samples close to each other and keep dissimilar 

samples far from each other

• Only information on whether pitches and timbres of a pair of observed 
spectrograms are identical or not is required

• Their actual labels are not necessary
• An arbitrary musical instrument sound can be treated

Methods
Pitch representations Timbre representations

Denseness ↓ Divergence ↑ Denseness ↓ Divergence ↑
Vanilla VAE 3.334 2.279 3.640 1.541

Proposed VAE 2.891 3.551 3.420 2.654

Evaluate denseness and divergence for unseen musical instruments
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• Denseness shows how close the latent variables with the same pitch or 
timbre label are

• Calculated as:  
$
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• Divergence shows how far the latent variables with different pitch or 
timbre labels are

• Calculated as: 
,
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Result

• The denseness got smaller, and the divergence got larger in both 
latent spaces by introducing the metric learning
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Visualizations of the pitch and timbre spaces

Denseness and divergence in details
• Denseness • Divergence


