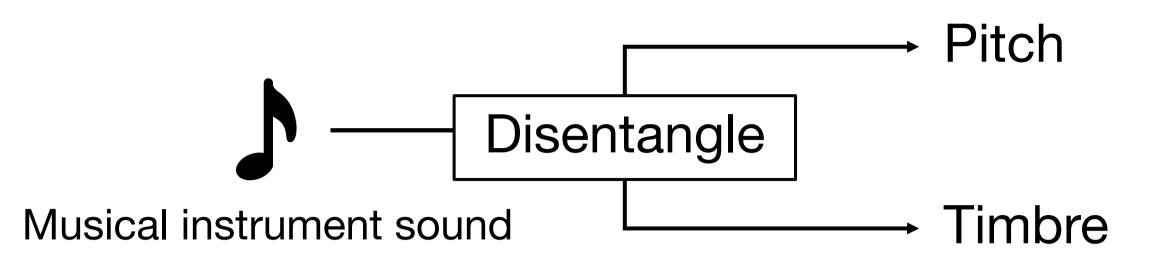
Pitch-Timbre Disentanglement of Musical Instrument Sounds Based on VAE-Based Metric Learning

Keitaro Tanaka¹ Ryo Nishikimi² Yoshiaki Bando³ Kazuyoshi Yoshii² Shigeo Morishima⁴ 1 Waseda University 2 Kyoto University 3 National Institute of Advanced Industrial Science and Technology (AIST) 4 Waseda Research Institute for Science and Engineering, Japan

Backgrounds

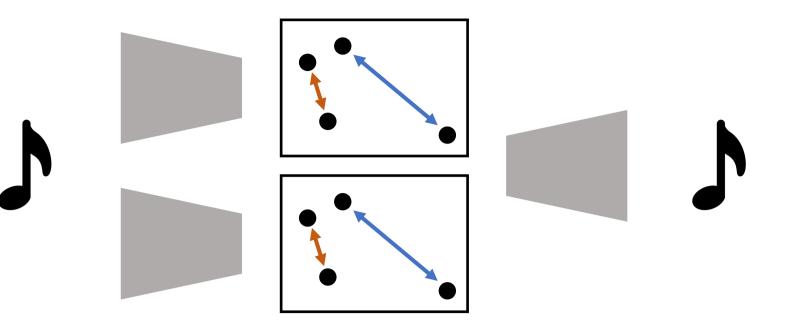
Approach

What is **Disentanglement**?



- To describe data as a combination of independent factors
- A sound can be disentangled into pitch and timbre \bullet

Introduce a metric learning technique

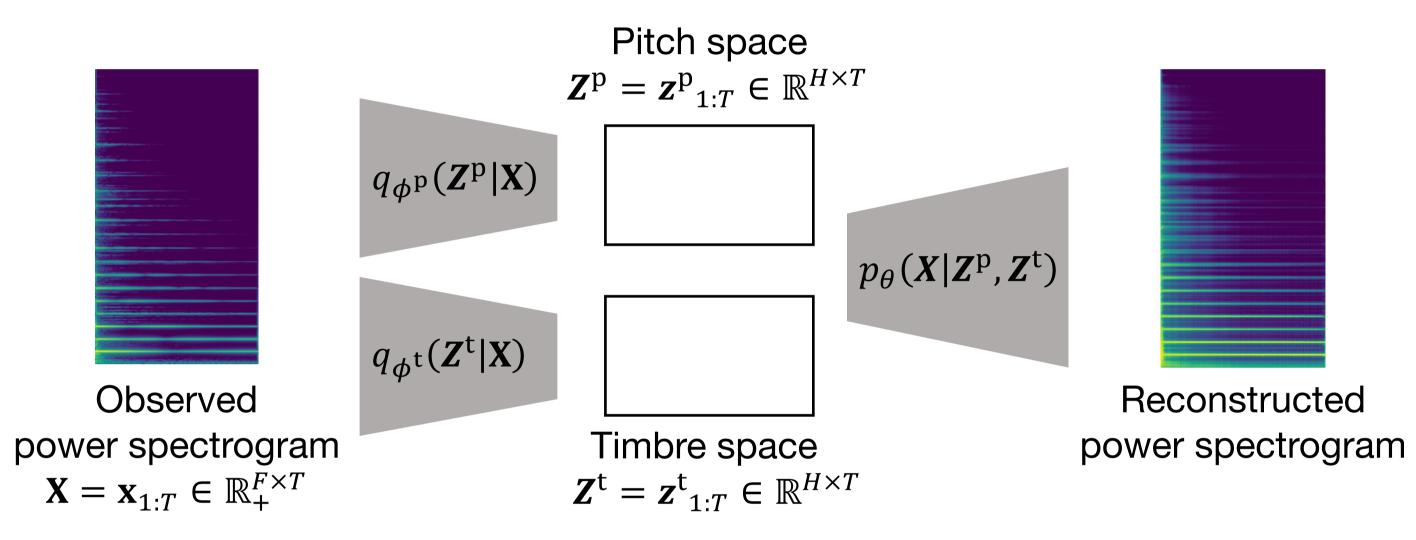


- A technique used for representing the dissimilarities of samples as the distances in a latent space
- Conventional approach cannot treat an arbitrary musical instrument sound because of using the concrete category labels
- Similar samples are mapped close to each other
- **Dissimilar** samples are mapped far away from each other

Method

Generative Model of the Observed Spectrogram

Formulate a probabilistic model of the observed spectrogram **X** with latent representations Z^{p} and Z^{t}



Transform two observed spectrograms X_1 and X_2 into the latent variables Z^p and Z^t independently

Pairwise Metric Learning for Disentanglement

Contrastive loss functions \mathcal{L}_{c}^{p} (for pitch) and \mathcal{L}_{c}^{t} (for timbre)

 $\mathcal{L}_{c}^{p} = \mathcal{D}_{11}^{p} + \mathcal{D}_{22}^{p} \pm \mathcal{D}_{12}^{p}$ (\mathcal{L}_{c}^{t} is calculated in a similar way)

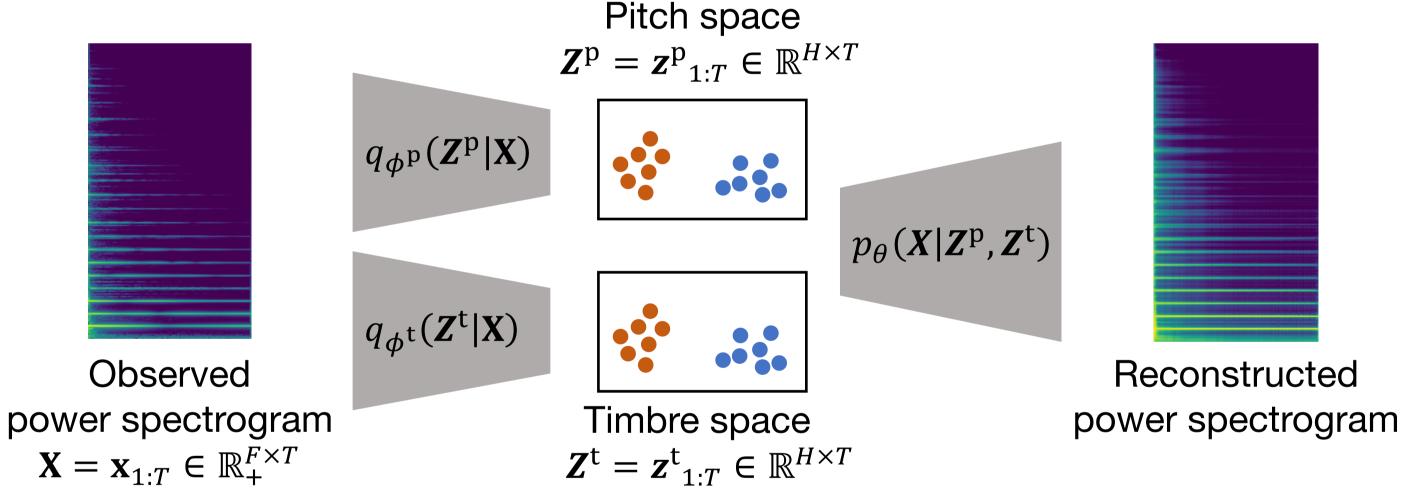
The sum of distances between all latent variable pairs of the same spectrogram (X_1 and X_2)

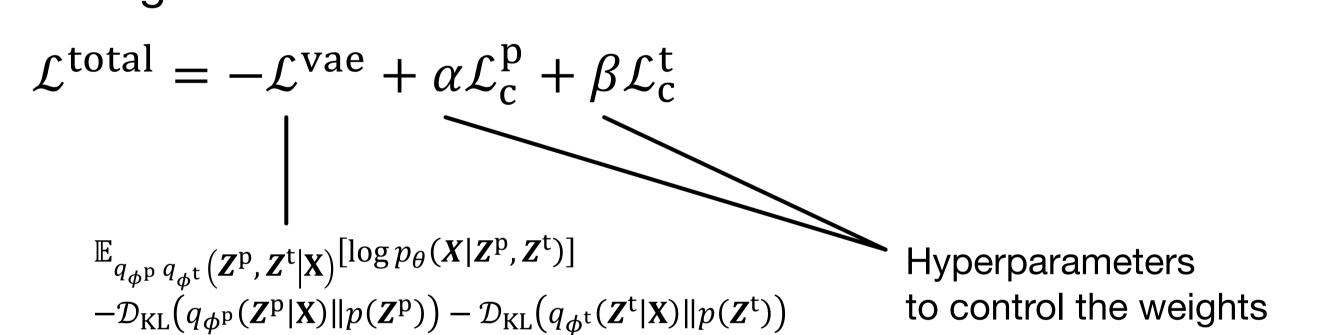
The sum of distances between all latent variable pairs from different spectrograms +: if X_1 and X_2 have the same pitch -: otherwise

• \mathcal{L}_{c}^{p} and \mathcal{L}_{c}^{t} pull similar samples close to each other and keep dissimilar samples far from each other

Training with the Weakly Supervised Learning

The training is conducted with the total loss function $\mathcal{L}^{\text{total}}$





- Only information on whether pitches and timbres of a pair of observed spectrograms are identical or not is required
- Their actual labels are not necessary
- An arbitrary musical instrument sound can be treated

Evaluation

Evaluate denseness and divergence for unseen musical instruments

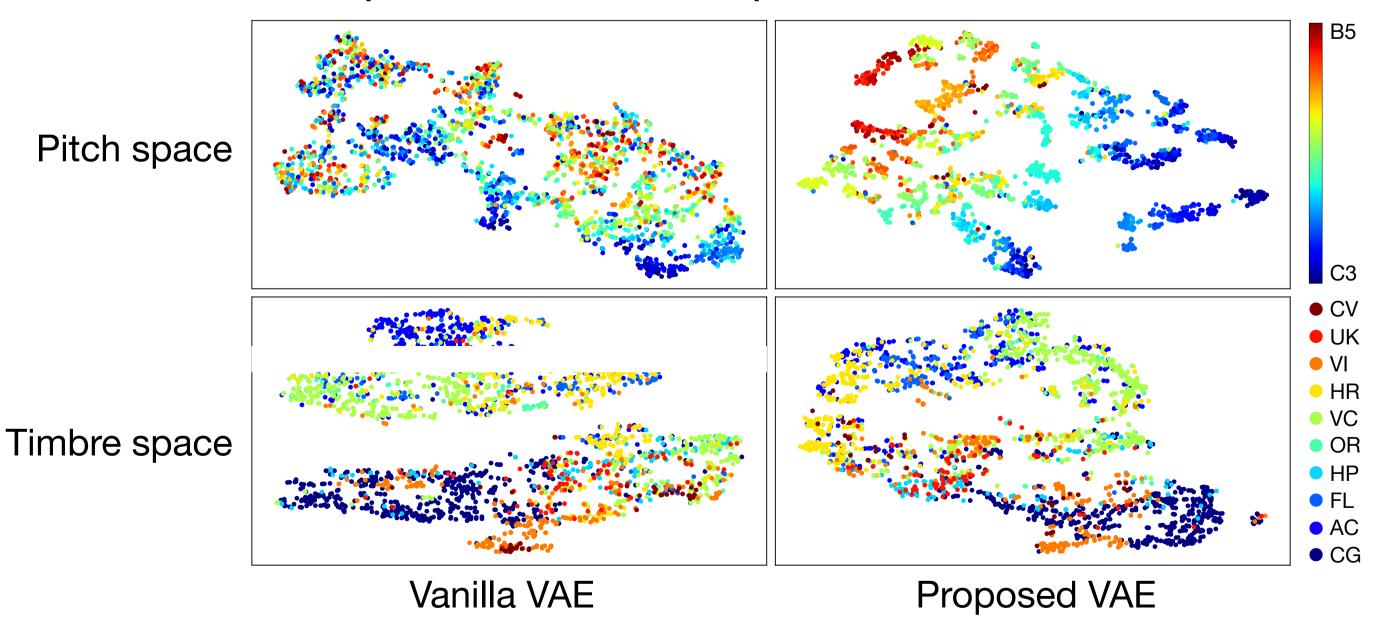
Conduct pairwise metric learning for these 2T samples

- **Denseness** shows how **close** the latent variables with the same pitch or timbre label are
- Calculated as:

 $\boldsymbol{\eta}_m^{\mathrm{p}} = \frac{1}{9N_m} \sum_{n=1}^{N_m} \sum_{t=1}^{9} \boldsymbol{z}_{mnt}^{\mathrm{p}}$

$$\frac{1}{M}\sum_{m=1}^{M}\frac{1}{9N_m}\sum_{n=1}^{N_m}\sum_{t=1}^{9}\|\boldsymbol{z}_{mnt}^{\mathrm{p}}-\boldsymbol{\eta}_m^{\mathrm{p}}\| \quad \text{(Timbre in a similar way)}$$

Visualizations of the pitch and timbre spaces



- **Divergence** shows how far the latent variables with different pitch or timbre labels are
- Calculated as: \bullet

 $\frac{2}{M(M-1)} \sum_{m_1=1}^{M-1} \sum_{m_2=1}^{M} \|\boldsymbol{\eta}_{m_1}^{\rm p} - \boldsymbol{\eta}_{m_2}^{\rm p}\| \text{ (Timbre in a similar way)}$

Result

Methods	Pitch representations		Timbre representations	
	Denseness ↓	Divergence ↑	Denseness ↓	Divergence ↑
Vanilla VAE	3.334	2.279	3.640	1.541
Proposed VAE	2.891	3.551	3.420	2.654

The denseness got smaller, and the divergence got larger in both latent spaces by introducing the metric learning

Denseness and divergence in details

• Denseness

