Intermediate Loss Regularization for CTC-based Speech Recognition Jaesong Lee^{NAVER}, Shinji Watanabe^{JHU}

NAVER CLOVA

Introduction

- Improve CTC-based ASR model using Intermediate CTC, a simple auxiliary
- Combine Intermediate CTC and stochastic depth for further improver
- With Conformer, it reaches CER 5.2% AISHELL-1 with greedy decoding and without any language models, nearly reaching SOTA of autoregressiv
- Also improves Mask CTC, CTC-based non-autoregressive model

Architecture

- Transformer/Conformer encoder + CTC
- Transformer: self-attention + residual network Conformer: augment Transformer with
- convolution layers Greedy decoding for CTC,
- no beam search or external language models!

Stochastic Depth

- Regularization method for residual networks (e.g. Transformer and Conformer)
- During training, each layer may be skipped with some probability
- Improves deep models (\geq 24 layers), but does not improve shallow models

	Intermediate CTC								
loss	 StochDepth skips each la Instead, consider a sub-r When the full model is for 								
ment	the sub-model can be co								
on	 Loss = (1-w) * full model 								
	• During testing, only the f								
	Intermediate CTC consist								
ve+LM	from 6 layers to 48 layers								
	• Can be combined with St								

Experiments

- nearly reaching autoregressive state-of-the-art results (WSL9.3% and AISHELL-1.5.1%)

	WSJ (WER)		TED-LIUM2 (WER)		AISHELL-1 (CER)			WSJ (WER)		TED-LIUM2 (WER)		AISHELL-1 (CER)	
Transformer	dev93	eval92	dev	test	dev	test	Conformer	dev93	eval92	dev	test	dev	test
12-layer	20.1	16.5	14.8	14.0	5.8	6.3	12-layer	15.2	12.4	10.5	9.8	5.4	6.0
+ InterCTC	17.5	13.6	13.3	12.3	5.7	6.2	+ InterCTC	13.4	10.8	9.7	9.1	5.1	5.6
+ StochDepth	19.8	16.2	13.8	13.1	5.9	6.4	+ StochDepth	13.1	10.8	11.1	10.7	5.2	5.8
+ both	16.8	13.7	13.2	12.1	5.7	6.1	+ both	12.0	9.9	10.8	9.9	4.7	5.2
24-layer	17.8	13.9	12.6	12.2	5.4	5.9	 Л Л -		throe	hald	day02	ava10 2	
+ InterCTC	15.3	12.4	11.5	10.6	5.1	5.6					uev95	Eval92	
+ StochDepth	16.3	12.7	11.9	11.2	5.2	5.7	12e	nc-6dec	0.0		16.5	13.5	
+ both	14.9	11.8	10.9	10.2	5.2	5.5			0.99	9	15.7	12.9	
48-laver	16.6	13.8	11.6	10.9	5.1	5.7	+ Ir	terCTC	0.0		14.4	11.6	
+ InterCTC	14.9	12.6	10.7	10.3	5.1	5.5			0.99	9	14.1	11.3	
+ StochDepth	15.6	12.9	11.0	10.2	5.0	5.4	Ma	sk CTC [13]	0.99	9	15.4	12.1	
+ both	14.2	11.8	10.3	9.9	4.9	5.3	Ali	gn-Refine [37	7] -		13.7	11.4	

ayer independently model by skipping upper layers as a whole orwarded, mputed with very small overhead! CTC + w * sub-model CTC full model CTC is used tently improves CTC performance, tochastic Depth for further improvement

Intermediate CTC always improves all model of any depth Stochastic Depth may not improve shallow network Using both gives better result, implying two methods are complementary to each other With conformer, it achieves WSJ 9.9% and AISHELL-1 5.2%,

